Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Воздухозаборник 201 (рис

Все приведенные выше теплообменные устройства с проницаемым высокотеплопроводным заполнителем в каналах или межтрубном пространстве (см. например, рис. 1.3 и 1.10) могут быть использованы для организации фазового превращения потока теплоносителя. Отметим некоторые наиболее интересные конструкции испарительного элемента для сброса теплоты, подводимой к сплошной поверхности. В конструкции, показанной на рис. 1.11,д, охлаждающая жидкость распределяется по каналам 2 и при движении сквозь пористую матрицу 3 в окружающее пространство она поглощает теплоту и испаряется. Если такое устройство размещено в отверстии корпуса аппарата перед воздухозаборником реактивного двигателя, то в качестве испаряющейся жидкости можно использовать горючее последнего. В другом испарительном элементе пористое покрытие на теплоотдающей поверхности не имеет каналов, но выполнено трехслойным, с различной проницаемостью боковых и среднего слоев, причем последний имеет наиболее высокое гидравлическое сопротивление (см. рис. 1.11, 6). Охлаждающая жидкость распределяется по теплоотдающей поверхности стенки 1 внутри примыкающего к ней слоя 4 высокой проницаемости. Далее направления потоков теплоты и испаряющейся жидкости в пористой структуре совпадают — по нормали от теплопередающей поверхности.  [c.14]


Однако при глубоком дросселировании двигателя (значительном изменении числа оборотов пли проходного сечения сопла ИТ. п.) указанный режим работы диффузора — воздухозаборника нарушается. Так, при уменьшении объемного расхода через двигатель противодавление за диффузором увеличивается, в связи с чем дополнительная сверхзвуковая зона сокращается и потери в дополнительном скачке падают (Од растет). При некотором дроссельном режиме дополнительная сверхзвуковая зона в диффузоре исчезает. Дальнейшее сокращение расхода приводит к тому, что в горле диффузора устанавливается дозвуковая скорость, после чего дросселирование начинает воздействовать на интенсивность замыкающего скачка входной системы из-за уменьшения расхода уменьшается скорость за скачком, что заставляет его смещаться в область больших значений скорости перед ним, но при этом система скачков не будет фокусироваться на кромке обечайки.  [c.486]

Приведенный в 3 метод расчета газового эжектора позволяет определить параметры эжектора — увеличителя тяги с учетом сжимаемости при больших отношениях давлений смешивающихся газов, больших скоростях и температурах в эжектирую-щей струе и тем самым уточнить полученные выше результаты. Расчет проводится для эжектора с заданными геометрическими размерами, т. е. параметрами а и /. Полное давление и температура эжектирующего газа р и Т для данного режима работы двигателя известны. Полное давление и температура торможения эжектируемого воздуха р и Т1 определяются по параметрам атмосферы Рв и и скорости полета с учетом потерь полного давления в воздухозаборнике. Далее, последовательно задаваясь различными значениями Я2, определяем параметры смеси газа и воздуха на выходе из диффузора. Реальным будет такой режим (такие значения коэффициента эжекции п и скорости истечения w ), при котором давление дозвукового потока в выходном сечении диффузора получается равным атмосферному давлению Ря.  [c.561]

При расчете внешнего обтекания или расчете течения в воздухозаборнике в качестве одной из границ может быть взята ударная волна (характеристика), направление которой может быть рассчитано в ходе решения задачи о взаимодействии двух однородных сверхзвуковых потоков.  [c.281]

Ниже приводятся примеры расчета двумерных сверхзвуковых течений, относящиеся к течениям в воздухозаборниках и соплах.  [c.286]

Рис. 14.9. Схема плоского гиперзвукового воздухозаборника Рис. 14.9. Схема плоского гиперзвукового воздухозаборника

Рис. 14.10. Структура течения перед входом воздухозаборника Рис. 14.10. Структура течения перед входом воздухозаборника
Картина течения в горле воздухозаборника для Мя = 5, = = 0 , й = 0,2 показана на рис. 14.11. Масштабы по осям х и г— разные. В местах расположения ударных волн линии постоянного безразмерного давления сгущаются. В области горла на входе наблюдается скачок, отраженный от обечайки. Этот скачок взаимодействует с течением расширения от угловой точки и падает на нижнюю стенку. Затем происходит последовательное отражение скачка от нижней стенки и обечайки воздухозаборника.  [c.287]

Управление обтеканием, проявляющееся в непосредственном воздействии на поток газа около летательных аппаратов, используется для улучшения их аэродинамических свойств и позволяет решать две основные задачи. Одна из них связана с таким воздействием на обтекающий газ, при котором достигаются заданные суммарные аэродинамические характеристики или их составляющие. Например, может обеспечиваться нужное значение максимального коэффициента подъемной силы или наивыгоднейшее аэродинамическое качество, требуемое изменение (повышение или снижение) лобового сопротивления, сохранение устойчивости ламинарного пограничного слоя и, как результат, уменьшение трения и теплопередачи. Решение второй задачи позволяет формировать таким образом управляющий поток, чтобы улучшить условия обтекания органов управления и стабилизирующих устройств (оперения) и тем самым повысить управляющий и стабилизирующий эффекты. Кроме того, соответствующие устройства, управляющие движением газа, используются для повышения эффективности реактивных двигателей (в частности, путем улучшения обтекания воздухозаборников), а также отдельных средств механизации летательных аппаратов (щитки, предкрылки, закрылки и др.).  [c.103]

Формула (4.1.1) определяет силу тяги в условиях воздействия на летательный аппарат неподвижной атмосферы. Однако наличие воздухозаборных и сопловых устройств, возникновение струй продуктов сгорания топлива изменяют картину обтекания летательного аппарата воздушным потоком. Это необходимо учитывать при определении аэродинамических характеристик, в частности следует принимать во внимание влияние скачка уплотнения, образующегося перед воздухозаборником, повышение давления на внешних поверхностях воздухозаборников и сопл, интерференцию между воздухозаборниками и крылом (или корпусом), а также воздействие струй на поток воздуха у поверхности летательного аппарата. При определенных условиях внешние возмущения на обтекающий воздушный поток могут распространяться внутрь сопла двигателя и изменять силу тяги (управляющее усилие).  [c.301]

Турбореактивный двигатель (рис. 6.2) устанавливают на самолетах с околозвуковыми скоростями полета (при высокой начальной температуре газа перед турбиной скорость полета может увеличиваться до М > 2). Параметры рабочего тела (воздуха и продуктов сгорания топлива в воздухе) - давление р, температура Т и скорость w — вдоль газовоздушного тракта ТРД изменяются так, как показано в нижней части рис. 6.2. На взлете воздух из внешней среды засасывается через воздухозаборник I. Вследствие потерь в нем давление перед компрессором 2 становится несколько ниже давления внешней среды. В полете с большими скоростями воздух подвергается динамическому сжатию в свободной струе и сверхзвуковом диффузоре, затем сжимается в компрессоре, скорость его несколько уменьшается, а температура возрастает. За камерой сгорания 3 при определенном коэффициенте избытка воздуха температура Т продуктов сгорания меньше температуры пламени Тпл и имеет значение, при котором обеспечивается надежная работа турбины ГТД. Давление р продуктов сгорания в камере несколько падает, скорость  [c.256]


Основными конструктивными элементами ТВД (рис. 6.4, а) являются вал воздушного винта 1, редуктор 2, воздухозаборник 3, компрессор 4, камера сгорания 5, турбина 6 и реактивное сопло 7 (выходное устройство в турбо-вальных ГТД). Рабочий процесс в ТВД принципиально не отличается от процесса в ТРД, однако в ТВД основная часть свободной энергии турбины используется для получения тяги винта. Перепад давлений в реактивном сопле значительно меньше, чем в ТРД, поэтому скорости истечения сравнительно невелики и реактивная тяга составляет всего от 10 до 25 % общей.  [c.261]

ТВД АИ-20А 2-муфта 3 -осевой подшипник 4 — воздухозаборник  [c.270]

Удельная масса двигателя у = т Р определяется отнощением массы Шдв двигателя (без воздухозаборника, топлива, масла и самолетных агрегатов) к его номинальной реактивной тяге Р.  [c.278]

I — передний обтекатель 2 — воздухозаборник 3 — передняя силовая стойка 4 — входной направляющий аппарат 5 — рабочая лопатка 1-й ступени 6 — направляющая лопатка первой ступени 7 — секция ротора 8 — стяжной болт Q — выходной спрямляющий аппарат 10 — задняя силовая стойка II — диффузор 12 — опорный подшипник 13 — опорно-упорный подшипник  [c.225]

Сильное влияние на эксплуатационные характеристики оказывает обледенение входной части ГТУ. При засасывании воздуха происходит повышение скорости ГТУ и, как следствие, снижение температуры воздуха примерно на 5°. В определенных условиях это приводит к обледенению воздухоприемной шахты, воздухозаборника и входного направляющего аппарата. Обледенение вызывает падение КПД и мощности и повышение температуры газа перед турбиной попадание льда внутрь проточной части может вызвать повреждение лопаточного аппарата компрессора.  [c.341]

Так, например, при техническом обслуживании самолета Ан-2бБ на воздухозаборнике левого  [c.708]

Производство панелей с внутренними усилителями более экономично, если для сборки узла использовать клеевое соединение внешней панели из упрочненного пластика и стальной внутренней панели. Относительно простые панели капота формуют с использованием матов из стекловолокна. Детали более сложной формы, включая воздухозаборник, изготовляют формовкой ЛФК на модельных плитах, со скользящими формовочными стержнями, работающими от кулачкового привода.  [c.21]

Преимущества композиционных материалов были успешно использованы в конструкции канала воздухозаборника вспомогательной энергетической установки самолета ДС-10 фирмы Мс Don-  [c.56]

F 02 <В — Двигатели внутреннего сгорания (поршневые, вообще) С — Газотурбинные установки, воздухозаборники реактивных двигательных установок, управление подачей топлива в воздушно-реактивных двигательных установках D — Управление или регулирование двигателей внутреннего сгорания F — Цилиндры, поршни, корпуса или кожухи цилиндров, устройство уплотнений в двигателях внутреннего сгорания G — Силовые установки и двигатели объемного вытеснения, работающие на горячих газах или продуктах сгорания, использование отходящей теплоты двигателей с нагревом рабочего тела путем сгорания К—Реактивные двигательные установки М—Системы подачи топлива или горючей смеси для двигателей внутреннего сгорания и составные части этих систем N — Пуск двигателей внутреннего сгорания, вспомогательные средства для пуска двигателей Р—Зажигание в двигателях внутреннего сгорания, работающих без самовоспламенения от сжатия, проверка момента зажигания в двигателях с самовоспламенением от сжатия)  [c.38]

Упоры для установки изделий при подаче их к машинам или станкам В 65 Н 9/(04, 06) Управление [F 02 (воздухозаборниками газотурбинных установок или реактивных двигательных установок С 7/057 нагнетателями В 37/(12-14) ракетными двигательными установками К 1/76, 9/(00, 26, 56-58, 80) реверсами тяги реактивных двигателей К 1/76, 9/92 соплами или сопловыми насадками реактивных двигателей К 1/15) движением транспортных средств G 05 D 1/00-1/12 движителями транспортных средств на воздушной подушке V 1/14-1/15 коробками передач на транспортных средствах К 20/00, 23/00) В 60 В 61  [c.200]

Рассмотрим течение идеального совершенного газа с показателем адиабаты А = 1,4 в плоском гиперзвуковом воздухозаборнике, схема которого представлена на рис. 14.9. В таком воздухозаборнике скорость потока на выходе остается сверхзвуковой. Ра1Счетное число М для воздухозаборника Мир = 6. Вычисления  [c.286]

Структура течения перед входом воздухозаборника при трех значениях чисел Ми = 5 6 8 приведена на рис. 14.10. Ударная волна от первого клина воздухозаборника выделялась в прон ес-се счета и обозначена на рисунке сплошной жирной линией. Ударные волны от последуюгдих клиньев не выделялись. При  [c.287]

Среди судовых ГТУ наибольшее применение находят легкие прямоточные установки. Основные особенности их можно показать на примере ГТД, схема которого приведена на рис. 4.17. ГТД состоит из воздухозаборника I, КНД 4, КВД 5, камеры сгорания 6, ТВД 7, ТСД 8 и ТНД (турбины винта) 10. Компрессор 5 приводится во вращение турбиной 7, компрессор 4 — турбиной 8 вал компрессора 4 и турбины 8 проходит внутри вала компрессора 5 и турбины 7 (конструкция вал в валу ). Мощность турбины 10 винта через рессору 13 и редуктор 14 передается винту. Роторы всех трех турбин имеют разную частоту вращения. Для передачи мощноети от пусковых электродвигателей и для привода расположенных на корпусе двигателя механизмов служат передняя 2 и основная 3 коробки приводов. Масло-агрегат 15 также получает мощность от вала компрессора. Все элементы ГТД смонтированы на общей раме 16. Кожух 12 газоотводного патрубка 11 сообщается с кожухом двигателя 9. Окружающий воздух эжектируется отработав-щими газами и, проходя между кожухом и корпусом двигателя, охлаждает их.  [c.198]


Воздушно-реактивные двигатели. Турбореактивный двигатель (см. рис. 6.2) работает по термодинамическому циклу (рис. 6.3, а). На взлете воздух из атмосферы засасывается в воздухозаборник со скоростью до 150 — 200 м/с. В полете на больщих скоростях воздух подвергается динамическому сжатию в свободной струе и сверхзвуковом диффузоре до параметров, соответствующих точке в. Дальнейщее сжатие воздуха до точки к происходит в компрессоре. (В современных ТРД основным типом компрессора является многоступенчатый осевой.) Общая степень повышения давления в ТРД достигает 100 — 200.  [c.259]

В ТРДД с передним расположением вентилятора (см. рис. 6.4,6) воздух из атмосферы поетупает в воздухозаборник 3, который в зависимости от назначения двигателя может быть дозвуковым или сверхзвуковым. Затем воздух проходит первую (переднюю) часть компрессора (вентилятор). За вентилятором 8 воздушный поток разветвляется на два потока. Воздух внутреннего контура сжимается в компрессоре 4, его давление и температура существенно возрастают, затем, как и в ТРД, поступает в камеру сгорания 5, куда через форсунки подается топливо. Газ с высокой температурой и давлением  [c.261]

Рабочий процесс, схема и основные параметры ПВРД существенно зависят от скорости полета. В ПВРД для дозвуковых скоростей параметры потока (давление р, скорость и>, температура Т) изменяются так, как показано на рис. 6.5 а. Воздухозаборник в этом случае выполняется в виде расширяющегося канала, реактивное сопло сужающееся.  [c.262]

При больших скоростях полета возрастает температура торможения потока. Так, при Мп = 6 температура воздуха при выходе из воздухозаборника составляет 1600 К, а при Мп = 10 достигает 3600 К. Однако при этом резко увеличиваются потери в воздухозабор-  [c.262]

Главную силовую установку (рис. 6.12) пассажирского судна на подводных крыльях Буревестник составляют два двигателя АИ-20А (1) мощностью по 2000 кВт, приводящие двухступенчатые водометные движители 7. Применение водометного движителя позволило полностью сохранить конструкцию серийного ТВД, за исключением системы автоматического регулирования, которая была несколько изменена. Во время пуска двигателя воздушная заслонка 5 воздухозаборника открывается, и водомет вместе с водой забирает воздух, обеспечивая достаточно легкую раскрутку ротора. Двигатель АИ-20А был установлен также на судне на воздушной подушке Сормович .  [c.269]

В реактивных двигателях впереди имеется воздухозаборник, представляюп],ий собой переднюю часть диффузора. Ниже мы покажем, что скорость забираемого воздуха надо уменьшить с тем, чтобы сообщить ему энергию для создания реактивной струи большой скорости, благодаря чему создается нужная тяга.  [c.96]

Для обеспечения высокого КПД как на номинальном режиме, так и на режимах частичных нагрузок всережимные ГТД выполняют по усложненной схеме. На рис. 1.9 схематически представлен подобный газотурбинный двигатель [2]. ГТД состоит из воздухозаборника 1, компрессора низкого давления (КНД) 4, компрессора высокого давления (КВД) 5, камеры сгорания 6, ТВД 7, ТСД 8, ТНД (турбины винта) 10. Компрессор высокого давления приводится во вращение турбиной высокого давления, компрессор низкого давления — турбиной среднего давления (вал проходит внутри вала КВД—ТВД). Турбина винта вырабатывает полезную мощность, которая через рессору 13 и редуктор 14 передается винту. Все три турбины имеют различную частоту вращения. Для передачи мощности от пусковых электродвигателей и для привода навешенных вспомогательных механизмов служат передняя 2 и основная 5 коробки приводов. Маслоагрегат 15 также получает энергию от ва-ла компрессора. Все элементы ГТД смонтированы на общей раме 16. Кожух 12 газоотводного патрубка 11 сообщается с кожухом двигателя 9. Окружающий воздух эжектируется уходя-  [c.17]

Были измерены уровни шума, производимого компрессорами с незаглушенными и заглушенными воздухозаборниками. В последнем случае был применен комплексный глушитель, предложенный С. П. Алексеевым (табл. 34).  [c.196]

Упрочненный пластик используется для изготовления разнообразных рабочих или декоративных накладных деталей, таких, например, как накладки воздухозаборников на капоте и различные детали внутренней отделки, имитирующие дерево. Для изготовле-  [c.21]

Успех ранее рассмотренной програмлпл и стремление к расширению опыта применения композиционных материалов в фюзеляжных конструкциях позволили начать новые работы по созданию полноразмерных средней и хвостовой частей фюзеляжа самолета Р-5. В работе предполагалось использовать опыт, накопленный при создании элементов крыла и вертикального стабилизатора, воздуховодов воздухозаборника и двигателей, поверхностей управления со сложным контуром и топливных емкостей. Длина оболочки 5,1 м. Ввиду сложной геометрической конфигурации конструкции в основном были использованы углепластики (47%). Применялись также боропластики (12%), стеклопластики (14%), металлы и другие материалы (27%).  [c.163]

Так вот Тихоплав и поставил такой ТВД на кop fe корабля, но только уже без воздушного винта. Под водой, на тех же стойках, что держат заднее подводное крыло, он смонтировал другой двигатель, вернее сказать, часть двигателя, состоящую только из камеры сгорания и турбины, вся мощность которой идет на гребной винт. Подводный двигатель, упрятанный в обтекаемую гондолу, очень мал по размерам. Как некоторые животные-паразиты, не имеющие даже рта, он лишен воздухозаборника, компрессора, собственной топливной и смазочной системы сжатый воздух, занимающий в несколько раз меньший объем, и топливо он получает по полым стойкам сверху, от своего более самостоятельного напарника, а охлаждает его прямоточная струя забортной морской воды. Выхлопные газы по спещ1альной трубе также уходят наверх и выпускаются в воздух.  [c.206]

Воздух [очистка <в помещении В 03 С 3/32 в самолетах В 64 D 13/00) регулирование потоков воздуха F 24 F 13/08 сжатый, использование для уплотнения формовочных смесей В 22 С 15/22-15/26 увлажнение F 24 F 3/14, 6/00 удаление из сосудов В 65 D 51/16 циркуляция в холодильных установках F 25 D 17/00-17/08] Воздуходувные устройства [для ДВС F 01 Р 5/02 для дымоходов F 23 J 3/00 в пескоструйных машинах В 24 С 5/02-5/04 В 65 Н для подачи (изделий к машинам (станкам) 5/22 нитевидного материала 51/16) для разделения изделий, уложенных в стопки 3/14, 3/48 для транспортирования изделий от машин к стопкам 29/24) в системах подачи воздуха в топку F 23 L 5/02] Воздухозаборники [F 02 С <для газотурбинных или реактивных двигательных установок 7/04-IjOSl реактивных двигателей , летательных аппаратов В 64 D 33/02 В 60 систем вентиляции Н 1/30 К 11/08, 13/02) транспортных средств, судов В 63 J 2/10]  [c.58]


Смотреть страницы где упоминается термин Воздухозаборник 201 (рис : [c.100]    [c.485]    [c.286]    [c.287]    [c.289]    [c.301]    [c.261]    [c.261]    [c.262]    [c.262]    [c.263]    [c.225]    [c.25]    [c.205]    [c.122]   
Справочник авиационного инженера (1973) -- [ c.5 , c.7 ]



ПОИСК



3 Запас устойчивости Зуд» воздухозаборника

Воздухозаборник сверхзвуковой

Воздухозаборник сверхзвуковой боковой

Воздухозаборник сверхзвуковой лобовой

Воздухозаборник сверхзвуковой осесимметричный

Воздухозаборник сверхзвуковой плоский

Неголовные воздухозаборники

Противообледенительные системы остекления кабин и воздухозаборников ГТД

Радиаторы, воздухозаборники

Электрические системы управления устройствами воздухозаборников. Система автоматического регулирования управления стабилизатором



© 2025 Mash-xxl.info Реклама на сайте