Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы нитевидные

Разработка и исследование комплексных литейных сплавов, состоящих из металлической матрицы и специально подобранных наполнителей. Это направление может открыть новые перспективы в деле изготовления высокопрочных алюминиевых отливок, тем более, что в качестве наполнителей можно применять самые разнообразные материалы (нитевидные кристаллы из АЬОз, высокопрочную стальную проволоку, различные горные породы).  [c.89]


П. 11. Свойства отдельных материалов нитевидных кристаллов, волокон и матриц  [c.501]

Итак, многие вопросы металловедения неразрывно связаны с теорией дислокаций. Теория дислокаций подсказала пути реализации скрытых резервов прочности металлов, заключающиеся в более полном использовании сил межатомных связей в кристаллической решетке. Это выразилось, в частности, в разработке принципиально новых, практически бездислокационных материалов — нитевидных кристаллов металлов и других кристаллических веществ (графита, окислов и др.), обладающих чрезвычайно высокой прочностью в повышении прочности ранее известных марок стали путем комбинированной термомеханической обработки (ТМО).  [c.68]

Композиционные материалы имеют ориентированную структуру и могут быть разделены на волокнистые материалы, матрица которых содержит упрочняющие одномерные наполнители (волокна, проволоки, нитевидные  [c.61]

Таблица 3.32. Механические свойства волокон, проволоки и нитевидных кристаллов для армирования композиционных высокопрочных и высокомодульных материалов [14, 15, 24] Таблица 3.32. Механические свойства волокон, проволоки и <a href="/info/37319">нитевидных кристаллов</a> для армирования композиционных высокопрочных и высокомодульных материалов [14, 15, 24]
Экспериментально к теоретической прочности материалов удалось приблизиться путем образования из них нитевидных кристаллов—усов. Эти очень тонкие кристаллы (толщиной 0,5...2 мкм н длиной 2... 10 мм) содержат мало дефектов структуры, вероятность обнаружения которых уменьшается с уменьшением объема или поперечных размеров. В силу этих причин прочность волокон стекла (стекловолокно) существенно выше прочности стекла в монолите. Полученные на основе волокон структуры (стеклопластики и т. п.) обладают высокой удельной прочностью.  [c.131]

Композиционные материалы могут иметь различную структуру. Но во всех случаях, по самому определению, композит состоит по крайней мере из двух компонентов - наполнителя и связующего. Последнее обычно называют матрицей. Если наполнитель представляет собой уложенную в определенном порядке систему нитей или нитевидных кристаллов, композиционный материал приобретает резко выраженные свойства анизотропии, и модули упругости в различных направлениях могут различаться в несколько крат.  [c.337]

Приведем значения предела прочности для некоторых нитевидных материалов. Тут же, в табл. 2, даются для наглядности и соответствующие значения плотности р в кг/м=.  [c.72]


Рассмотрены также основные способы получения нитевидных кристаллов и их механические свойства, а также некоторые перспективы получения сверхпрочных материалов на базе усов.  [c.2]

Книга заканчивается главой, рассматривающей способы получения нитевидных кристаллов (усов) и перспективы использования их в технике, и для разработки сверхпрочных композиционных материалов.  [c.6]

Ниже приводим краткую сводку методов получения нитевидных кристаллов различных материалов (табл. 21).  [c.98]

Основным фактором, определяющим процесс роста нитевидных кристаллов,является температура — с ростом температуры скорость реакции восстановления резко увеличивается [165]. Однако существует оптимальная температура роста нитевидных кристаллов (табл. 22). Помимо указанного фактора, в процессе реакции важно соблюдать стабильность температуры, постоянство расхода водорода, использовать чистые реактивы и материалы [166]. Парциальное давление водорода оказывает влияние на рост кристаллов лишь при малых давлениях (ниже некоторой предельной величины). Нитевидные кристаллы методом восстановления можно получать не только из солей, но и из окислов металлов [167].  [c.100]

Весьма заманчиво использовать нитевидные кристаллы для получения конструкционных материалов. Известны попытки [198—210] создать материалы на базе нитевидных кристаллов, подобные стеклянному волокну, пропитанному пластиками.  [c.109]

Прочность волокнистых материалов на базе нитевидных кристаллов сапфира и вольфрамовой проволоки [214]  [c.109]

Четвертую группу составляют материалы, пространственные связи в которых создаются нитевидными кристаллами [19] или другими дискретными элементами, образующимися  [c.10]

При хаотическом распределении нитевидных кристаллов во всем объеме полимерной. матрицы модифицированную матрицу определяют по формулам (3.83), (3.84). Компоненты матрицы жесткости и упругие характеристики рассчитывают при объемном содержании нитевидных кристаллов, равном общему содержанию их в материале р = Ркр-  [c.205]

Рис. 7.3. Зависимость модуля упругости материалов с хаотическим расположением нитевидных кристаллов TIO, (/) и А1N (2) Рис. 7.3. Зависимость <a href="/info/487">модуля упругости</a> материалов с хаотическим расположением нитевидных кристаллов TIO, (/) и А1N (2)
Упругие свойства композиционных материалов, изготовленных на основе нитевидных кристаллов, так же как и свойства материалов на основе непрерывных волокон, линейно зависят от их объемного содержания. Это иллюстрируют типичные зависимости изменения модуля упругости материалов с хаотическим распределением нитевидных кристаллов в плоскости ху от их объемного содержания ркр (рис. 7.3). Данные получены на композиционных материалах, изготовленных на основе нитевидных кристаллов A1N и ТЮа- На каждую точку испытано по шесть образцов. Коэффициент вариации значений модуля упругости для обоих типов материалов не превышал 6 %. Экспериментальные значения модуля упругости хорошо согласуются с его расчетными значениями, вычисленными по формулам (7.2)— (7.9). Хорошее совпадение опытных и расчетных значений наблюдается также и для других упругих характеристик.  [c.206]

Материалы, армированные только нитевидными кристаллами, обладают также высокими прочностными свойствами. Как следует из табл. 7.1, введение в матрицу даже сравнительно небольшого объема нитевидных кристаллов повышает ее прочностные характеристики в плоскости их укладки в несколько раз, причем прочность при растяжении и межслойном сдвиге линейно зависит от объемного содержания нитевидных кристаллов (рис. 7.4). Разброс значении прочности при растяжении и сдвиге не превышал 10 % (число испытанных образцов на каждую точку — не менее восьми).  [c.207]

Нитевидные кристаллы имеют весьма короткие волокна, при этом соотношения длины и диаметра достаточно высоки. Это очень важно при использовании нитевидных кристаллов ( усов ) в качестве армирующего материала. Усы обладают высокой удельт ной прочностью и жесткостью. Их можно вальцевать, разрезать, обрабатывать без заметного снижения прочностных свойств. Существенным недостатком нового класса армирующих материалов — нитевидных кристаллов — является неприемлемость для них обычной технологии изготовления. Вискеризованные материалы требуют создания новой технологии в целях использования всех потенциальных возможностей вискернзации. Технология переработки материалов с вискери-зированными волокнами изложена в работе [102].  [c.19]


Теоретическая прочность твердых тел Прочность реальных кристаллов Сопротивление кристаллической решетки движению дислокаций ф Упрочнение за счет препятствий Термическая стабильность барьеров Мартенсит-ная структура стали и прочность Химическая и структурная неоднородность и механические свойства титановых сплавов Высокая прочность и композиционные материалы Нитевидные кристаллы Механизм упрочнения композиций, армированных непрерывными и короткими волокнами % Материаль , получаемые однонаправленной кристаллизацией  [c.279]

Внутри каждой in3 перечисленных груип композиционные материалы можно классифицировать различными способами по виду материала компонентов, их размерам, форме, ориентировке, а также по назначению или методу получения. Например, волокнистые материалы по виду матрицы делят на металлические, полимерные и керамические по виду волокон —на материалы, армированные проволокой, стеклянными, борными, углеродными, керамическими и другими волокнами или нитевидными кристаллами по размерам волокон — на материалы с непрерывными или короткими (дискретными) волокнами по ориентировке волокон — на материалы с однонаправленными или ориентированными в двух и более направлениях волокнами.  [c.635]

Бездефектную структуру можно получить только у очень чистых материалов и в очень малых объемах, исключающих возникновение и развитие дислокаций. Специальными методами получают нитевидные кристаллы толщиной 0,05—2 мкм и длиной в несколько миллрпиетров, так называемые усы, обладающие исключительной прочностью. Нитевидные кристаллы железа имеют прочность на разрыв 1350 кгс/мм , что примерно в 100 раз больше предела прочности технического железа и в 10 раз больше прочности качественных легированных сталей. Вместе с тем, усы обладают весьма высокими упругими характеристиками. Упругое удлинение железных усов достигает 5%, тогда как у технического железа оно не превышает 0,01%.  [c.173]

Единственный реальный способ пспользовання нитевидных кристаллов — это создание композитных материалов, состоящих из усов, ориентированно уложенных в металлической (напрп.мер, алюминиевой) или пластмассовой матрице. Если усы имеют длину, достаточную для прочного сцепления с матрицей по боковой поверхности усов, то удается в значительной мере использовать их прочность. Прочность композитных материалов, содержащих по массе 40-50% усов, в направлении вдоль сов составляет лрн-.мерно 30% прочности усов. Так, композиция из сапфирных усов (Л),Оз) и металлического алюмивия имеет прочность па растяжение 500-600 кгс/.ммь  [c.174]

Широко известно, что модуль упругости стали составляет 200 ГПа, но мало кто знает, у каких материалов он выше этой величины. В порядке возрастания модуля упругости можно привести следующие данные кобальт и никель - 210, родий и бериллий — 300, молибден - 330, вольфрам - 410, бороволокно - 430, карбидное волокно - 430, нитевидные кристаллы сапфир - Оо 530, графит - до 690), карболой карбид вольфрама, цементированный кобальтом) -700, алмаз - 1050,  [c.125]

За последние дасятилетия было выполнено много работ в попытках приблизиться к предельной прочности и не только со стеклом, но и со многими другими материалами, в том числе и с металлами. Вытягивали из расплава нити, выращивали идеальные нитевидные кристаллы, были созданы приборы для испытания на прочность микрообразцов длиной менее миллиметра. Возможность приближения к предельной прочности подтверждалась, волновала и вселяла радужные надежды. Но по мере накопления знаний, как всегда, начинали брать верх реалистические соображения.  [c.374]

Ниже будут кратко рассмотрены методы получения нитевид-> ых кристаллов и их свойства, а также перспективы использования нитевидных кристаллов и материалов на их базе в технике. Детально эти вопросы рассмотрены в ряде обзоров [158—164].  [c.97]

В США проведены больщне исследования по получению материалов, в которых нитевидные кристаллы использованы для армирования металлической матрицы. При этом использовались главным образом сапфировые усы и различные материалы матрицы серебро [201], алюминий [202], ниобий [211] и др. Считают, что детали из таких. материалов могут найти применение в космических кораблях и управляемых ракетах [202].  [c.109]

Эсновное препятствие для применения влагомеров этого типа в производственных условиях — трудности, связанные с введением материалов в волновод и привязкой их к поточным линиям. Их применяют для контроля влажности листовых материалов и жидкостей. Для тонких листовых и нитевидных материалов (бумага, текстильные ткани, синтетические волокна) в измерительном волноводе делают узкую прорезь по оси волновода вдоль линии напряженности электрического поля.  [c.256]

Вискерн.зация волокон Ч Особую группу представляют композиционные материалы, межслойные связи в которых создаются за счет нитевидных кристаллов, выращенных на поверхности волокон или введенных в полимерную матрицу между волокнами. Для. этой группы материалов наиболее типичны две схемы армирования с хаотическим расположением нитевидных кристаллов в одной плоскости (рис. 1.10, а) и во всем объеме (рис. 1.10, б).  [c.19]

В композиционных материалах, изготовленных на основе вискеризован-ных волокон с различной их ориентацией, структурные элементы (слои) выделяются плоскостями, проходящими параллельно плоскости укладки волокон, выбор плоскости деления материала на слои не зависит от характера расположения нитевидных кристаллов. Упаковка кристаллов отражается только на свойствах модифицированной матрицы, т. е. материалы с хаотической ориентацией нитевидных кристаллов перпендикулярно направлению армирующих волокон содержат слои с модифицированной транстропной матри-  [c.50]

Прессование полуфабрикатов проводилось при давлении (до 4—6 МПа), значительно превышающем давление прессования обычных угле-, боро- и стеклопластиков, что обусловлено необходимостью уплотнения материала и снижения пористости. Отклонения давления прессования от указанного значения могут быть причиной большой пористости или разрушения волокон нитевидными кристаллами. Температурный режим получения материалов на основе вискернзрванных волокон соответствовал температурному режиму, принятому для эпоксидного связующего. Технология получения рассматриваемого класса материалов в значительно большей степени, чем получение других материалов, определяет их структуру и свойства. Обусловлено это тем, что материалы, изготовленные на основе вискеризован-ных волокон или тканей, имеют основную арматуру — волокна или ткань и вспомогательную — кристаллы — предназначенную для улучшения сдвиговых свойств и прочности на отрыв в трансверсальном направлении. Указанные свойства определяются характером расположения нитевидных кристаллов. Последние могут распределяться хаотически во всем объеме материала или только в трансверсальных плоскостях, что определяется способом вискернзации и технологией получения материалов. Хаотическое распределение кристаллов во всел объеме является наиболее приемлемым способом одновременного повышения сдвиговых свойств материала во всех трех плоскостях. Модули сдвига в этом  [c.202]


Хаотическое распределение нитевидных кристаллов в одной плоскости имеет место при вискернзации из газовой фазы, Остальные способы, как правило, дают хаотическое распределение кристаллов во всем объеме материала. Однако способ вискернзации волокон не единственный фактор, определяющий характер распределения нитевидных кристаллов в композиционных материалах. Не менее важной следует признать технологию получения материалов на основе этих волокон, которая может в значительной степени изменить характер распределения нитевидных кристаллов в материале. Особенно это относится к технологии получения композиционных материалов методом прессования.  [c.202]

Рис. 7.2. Распределение нитевидных кристаллов в материале при вискериэации волокон из газовой фазы (а) и аэрозоля Рис. 7.2. Распределение <a href="/info/37319">нитевидных кристаллов</a> в материале при вискериэации волокон из <a href="/info/415471">газовой фазы</a> (а) и аэрозоля
Упругие характеристики композиционных материалов с учетом усредненных свойств матрицы рассчитывают по формулам, полученным для слоистых композиционных материалов с соответствующей укладкой волокон (однонаправленной или ортотропной) [25, 88]. Упругие постоянные связующего, входящие в эти формулы, заменяют упругими характеристиками модифицированной матрицы, которые вычисляют по зависимостям (7.2), (7.3), (7.6)—(7.9) в случае хаотического распределения нитевидных кристаллов в одной плоскости, перпендикулярной к направлению волокон. В случае же распределения кристаллов во всем объеме характеристики модифицированной матрицы определяют по зависимостям (3.83), (3.84) при коэффициенте армирования р = рдр. Выражения для упругих характеристик композиционного материала, армированного вискеризо-ванными волокнами в направлении оси 1, согласно зависимостям, приведенным на с. 59, имеют вид  [c.205]

Свойства модифицированной матрицы. Эффект упрочнения матрицы нитевидными кристаллами был исследован на материалах, изготовленных на основе эпоксидного связующего, армированного четырьмя типами нитевидных кристаллов. Материалы, армированные нитевидными кристаллами TIO2 и SI3N4, получали методом  [c.206]

Свойства композиционных материал лов на основе вискернзованных волокон. Этот класс материалов был экспериментально изучен на угле- и стеклопластиках. Были исследованы материалы, изготовленные на основе ленты из углеродных волокон, стеклоткани сатинового переплетения, жгутов из стекло- и углеродных волокон. Арматурой для изготовления стеклопластиков служили непрерывные волокна из алюмоборосиликатного стекла, а также стеклоткань ТС-8/3-250, подвергавшаяся вискеризации нитевидными кристаллами двуокиси титана ТЮ2 и нитрида алюминия A1N. В качестве арматуры для углепластиков были использованы жгуты из углерод-  [c.207]


Смотреть страницы где упоминается термин Материалы нитевидные : [c.225]    [c.9]    [c.137]    [c.416]    [c.15]    [c.22]    [c.110]    [c.12]    [c.50]    [c.203]    [c.206]    [c.207]   
Справочник по композиционным материалам Книга 2 (1988) -- [ c.201 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте