Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания Возбуждение электромагнитное

На рис. 13 показан анодный блок магнетрона, состоящий из отдельных резонаторов типа щель — отверстие (отверстие диаметром с1 и щель шириной ш). По стенкам резонаторов при возбуждении электромагнитных колебаний текут высокочастотные токи, в результате чего щель ш и отверстие б. образуют емкость и индуктивность.  [c.376]

В последнее время используется и электромаг-нитно-акустический метод, при котором возбуждение и прием ультразвуковых колебаний осуществляются электромагнитным бесконтактным способом [38].  [c.379]


Устройство точного останова состоит из электромеханического устройства — фотодатчика и электронного усилителя. Фотодатчик представляет собой чувствительное фотосопротивление, которое во время работы колеблется с амплитудой 1—2 мм и частотой 50 гц. Для возбуждения колебаний используется электромагнитное устройство.  [c.172]

ПЛАЗМОН — квант плазменных колебаний (см. Плазма, Плазма твердых тел). П. — элементарное возбуждение (квазичастица) поля плазменных колебаний в том же смысле, в каком фотон — элементарное возбуждение электромагнитного поля или фо-пон — поля колебаний решетки кристалла. Теория плазменных колебаний электронного газа постоянной плотности (с равномерно распределенным нейтрализующим положительным зарядом) приводит к следующему выражению для частоты П. ш  [c.28]

Теория искрового возбуждения электромагнитных колебаний. Рассмотрим работу эдс на контур, содержащий емкость, индуктивность и сопротивление. 1]сли заряд на конденсаторе q, а сила тока  [c.168]

Такой способ используется в динамике решетки твердого тела для описания малых колебаний ионов решетки вокруг их положений равновесия. Сложное коллективное колебательное состояние разлагается на независимые нормальные колебания. Эти нормальные колебания квантуются. Соответствующие кванты называются фононами. Такие фононы являются примером элементарных возбуждений. Они во многом соответствуют элементарным возбуждениям электромагнитного пол% — фотонам.  [c.14]

Время от времени появляются сообщения о резонансном физиологическом действии звука в воспринимаемом человеческим ухом диапазоне частот (до 20 кГц) и связи этого действия с преобразованием акустических колебаний в электромагнитные [152]. По-видимому, эти явления (их физические аспекты) также связаны с возбуждением акустоэлектрических колебаний, но (как показывают количественные оценки) уже не в отдельных клетках, а в органах, размер которых имеет порядок 0,1 м. Колебания органа в целом не могут не отражаться и на функционировании входящих  [c.60]

В некоторых случаях возбуждение волн одного диапазона посредством подвода к поверхности тела излучений другого может оказаться целесообразным даже с точки зрения снижения затрат энергии. Дело в том, что, например, волны КВЧ-диапазона ослабляются при их вводе в организм на двенадцать порядков за счет трансформации типов колебании (из электромагнитных в акустоэлектрические) [110]. Для волн же оптического и УФ-диапазонов такая трансформация не имеет места, отсутствуют и соответствующие потери. Выигрыш на двенадцать порядков может значительно перекрыть другие виды потерь. Впрочем, возбуждение одних диапазонов волн через другие имеет свои достаточно серьезные недостатки, которые здесь рассматриваться не будут.  [c.157]


Примером излучающей системы является вибратор Герца. Вибратор Герца представляет собой металлический стержень с двумя одинаковыми шарами Л и В на концах и небольшим искровым промежутком С посредине (рис. IV.4.5). Электроемкость вибратора определяется емкостями шаров, а индуктивность — индуктивностью обеих половин стержня. Источником возбуждения электромагнитных колебаний в вибраторе является индукционная катушка ИК ). Провода от вторичной обмотки ИК подключаются к искровому промежутку. Когда переменное напряжение во вторичной обмотке катушки достигает значения пробивного напряжения (III.1.6.Г), в искровом промежутке проскакивает искра, в вибраторе возникают электромагнитные колебания высокой частоты (IV.2.1.5°), сопровождающиеся из-  [c.336]

Силы инерции не всегда являются вредными, с которыми надо бороться. В настоящее время имеется много машин, в которых для выполнения того или иного технологического процесса намеренно возбуждаются колебания. Машины, в которых технологический процесс выполняется на основе возбужденных колебаний, называют вибрационными машинами. Возбудителями колебаний в этих машинах могут быть механические и электромагнитные вибраторы, гидравлические и пневматические пульсаторы. Рабочему органу машины, взаимодействующему с обрабатываемой средой, необходимо придать колебательное движение с желаемой частотой колебаний и амплитудой.  [c.300]

Кроме спонтанного излучения возбужденного атома существует индуцированное (вынужденное) излучение, когда атомы начинают излучать энергию под действием внешнего электромагнитного поля. Явление вынужденного излучения дает возможность управлять излучением атомов с помощью электромагнитных колебаний и таким путем усиливать или генерировать когерентное световое излучение.  [c.119]

Во всех этих примерах речь идет об использовании переменного электрического тока. Переменный электрический ток в энергетических электрических цепях является результатом возбуждения в них вынужденных электромагнитных колебаний. Эти вынужденные колебания создаются генераторами переменного тока, работающими на электростанциях.  [c.237]

Прохождение света через вещество ведет к возникновению колебаний электронов среды под действием электромагнитного поля волны и сопровождается потерей энергии последней, затрачиваемой на возбуждение колебаний электронов. Частично эта энергия вновь возвращается излучению в виде вторичных волн, посылаемых электронами, частично же она может переходить и в другие формы энергии. Если на поверхность вещества падает параллельный пучок (плоская волна) с интенсивностью /, то описываемые процессы должны вести к уменьшению I по мере проникновения волны в вещество. Действительно, опыт показывает, что интенсивность плоской волны обнаруживает такое систематическое уменьшение согласно закону  [c.563]

Электромагнитное поле, генерируемое лазером, зарождается из спонтанного излучения активной среды. Поэтому, хотя при возбуждении одного типа колебаний и формируется монохроматическое поле, его начальная фаза совершенно произвольна. Если возбуждается много типов колебаний, то их начальные фазы, как кажется на первый взгляд, не могут быть согласованными, так как они должны определяться различными спектральными компонентами случайного спонтанного излучения. Высказанная точка зрения предполагает, однако, независимость различных типов колебаний, т. е. основана на принципе суперпозиции, который несправедлив в области нелинейных явлений. В лазерах же нелинейные явления играют принципиальную роль (см. 225), вследствие чего типы колебаний в большей или меньшей степени должны влиять друг на друга, и может осуществиться их синхронизация. Специальные меры, способствующие реализации режима генерации сверхкоротких импульсов и упомянутые в начале параграфа, предназначены для усиления нелинейного взаимодействия типов колебаний.  [c.814]


Процессы, происходящие в твердых телах, связанные с колебаниями атомов кристаллической решетки, выглядят особенно просто, если обратиться к одному из самых фундаментальных обобщений квантовой механики. В основе этого обобщения лежит идея французского физика Луи де Бройля о том, что каждой волне с частотой со и волновым вектором к можно сопоставить частицу с энергией E—Htd и импульсом p = ftk. Так, световые (электромагнитные) волны можно рассматривать как квантовые осцилляторы излучения или считать, что они состоят и частиц — квантов, называемых фотонами. Каждый фотон имеет энергию Й.0). Аналогично, если обратиться к формуле (5.70) для энергии квантового осциллятора, то звуковую волну с волновым вектором к и поляризацией s можно рассматривать как совокупность ге(к, s) квантов с энергией Йсо(к, s) каждый и плюс энергия основного состояния /2Й<в(к, s). Эти кванты (или частицы звука) звуковой волны называют фононами. Величина ft. o(k, ь), очевидно, представляет собой наименьшую порцию энергии возбуждения над основным уровнем АЛ (к, s). Так как фонон несет наименьшую энергию, его рассматривают как элементарное возбуждение. Сложное возбуждение есть просто возбуждение, содержащее много фононов. Коллективные движения атомов в кристалле представляют собой звуковые волны, а соответствующие им возбуждения — кванты звука, или фононы.  [c.161]

При прохождении электромагнитной волны через вещество часть энергии волны затрачивается на возбуждение колебаний электронов в атомах и молекулах. В идеальной однородной среде периодически колеблющиеся диполи излучают вторичные электромагнитные волны той же частоты, которые, интерферируя с первичной волной, изменяют ее фазовую скорость распространения, но при этом полностью отдают поглощенную долю энергии.  [c.97]

Картину сложения двух гармонических колебаний можно продемонстрировать при помощи двух камертонов с электромагнитным возбуждением (рис. 382). Ножки камертонов совершают колебания, очень близкие к гармоническим. Луч света последовательно отражается от двух зеркальных поверхностей на торцах камертонов, а затем — от вращающегося зеркала, служащего для развертки, т. е. перемещения зайчика в горизонтальном направлении. Отклонение зайчика на экране пропорционально сумме отклонений ножек обоих камертонов.  [c.594]

В технике широко применяются электромеханические автоколебательные системы, в которых колебания совершает механическая система, а поступление энергии регулируется специальным электрическим устройством. Таков, например, электрический звонок. К подобным же автоколебательным системам относятся и камертоны с электромагнитным возбуждением, о которых упоминалось в 136.  [c.603]

Прикрепив струну к ножке камертона с электромагнитным возбуждением (рис. 442, а), можно возбуждать в струне поперечные колебания каждая точка колеблющейся струны движется в плоскости ху, перпендикулярной к струне. Но в плоскости ху каждая точка струны может совершать криволинейное движение. Так же как и в случае одной материальной точки, колеблющейся в плоскости ху, каждая точка струны может двигаться так, что одновременно будут изменяться ее координаты ху у. Движение каждой точки струны можно рассматривать как результат сложения  [c.672]

Лазерный способ возбуждения ультразвуковых колебаний является весьма перспективным, учитывая большую амплитуду ультразвуковых волн, возбуждаемых лучом лазера. При разработке установок целесообразно сочетать этот способ возбуждения с неоптическими бесконтактными способами приема, например электромагнитным, отличающимися более высокой чувствительностью.  [c.224]

Эффекты электромагнитного поля. Возбуждение акустических колебаний под действием электромагнитного поля происходит в результате нескольких эффектов. Эффект намагничивания проявляется во взаимодействии поля намагниченности ферромагнитного изделия с полем внешнего источника. Эффект магнитострикции проявляется в деформации элементарных объемов ферромагнитного изделия под действием внешнего магнитного поля. Обратный эффект — появление магнитного поля в результате деформации эле-  [c.224]

Оценка влияния различных эффектов электромагнитного поля показывает, что в диапазоне частот, обычно применяемых в дефектоскопии (до 10 МГц), для возбуждения и приема, акустических колебаний существенное значение имеют эффекты как вихревых токов, так и намагниченности.  [c.225]

Для настройки на прием только одной станции в современных радиоприемниках используются довольно сложные электронные схемы, включающие в себя генераторы электромагнитных колебаний. Сложение электрических колебаний от внутреннего генератора приемника с колебаниями, возбужденными в контуре приемника электромагнитными волнами от передаю о,их радиостанций, позволяет настраиват . приемник на очень узкий диапазон принимаемых частот. Внутренний генератор в приемнике называется гетеродином, а приемник с таким генератором назы1 ается супергетеродинным радиоприемником.  [c.255]

Еще в 1923 г. С. И. Зилитинкевичем были опубликованы работы [15], в которых сообщалось, что им в 1921 г. были обнаружены колебания, возникавшие в трехэлектродной лампе, когда на сетку ее подавалось более высокое напряжение, чем на анод Как выяснилось позже, это открытие находилось у истоков целого направления в технике возбуждения электромагнитных колебаний, в основе которого лежало использование взаимодействия электронного потока, периодически меняющегося по плотности, с неремен-ньтм электрическим полем.  [c.321]

Установка III (см. табл. 15) отличается от установки II тем, что концы ветвей резонирующего элемента соединены со станиной, т. е. массы должны быть весьма велики и представляют массу станины. Возбуждение колебаний осуществляют электромагнитным возбудителем колебаний дро-тивофазным приложением двух равных по величине возбуждающих сил Ро sin <> t одновременно к массе /п, и массе т . Узел колебаний должен совпадать с массой т, и должно соблюдаться равенство 1 = т + т . Для воспроизведения единицы гармонической силы в диапазоне частот необходимо массы mi, и жеткости делать сменными Кроме того, так как градуируемые образцовые динамометры имеют различные массы, необходимо предусмотреть юстировочные массы. дополнительно присоединяемые к 1 или т . Для этой колебательной системы можно записать следующее равенство инерционных сил m,ij = = т Хз m Xi, поскольку т х = О, так как х = О по условию. Недостаточно тщательная юстировка масс приведет к смещению узла колебаний и, как следствие, к резкому снижению добротности колебательной системы и увеличению динамической погрешности за счет движения весьма большой массы mj.  [c.546]


Через аттенюатор сигнал с усилителя 8 поступает на регулируемый фазовращатель 10 и далее на управляемый охраничитель 13. Сигнал с усилителя 8 подается также на формирователь 11, л с него на интегратор 12. Сигнал интегратора управляет степенью ограничения сигнала в ограничителе 13. С вьгхода ограничителя сигнал подается на усилитель 14 мощности, а затем на катушку возбуждения электромагнитного возбудителя 7 колебаний. Катушка подмагничивания возбудителя 7 соединена с выпрямителем 15.  [c.301]

Дифракционные явления на полупрозрачных решетках можно объяснить резонансными свойствами отдельного элемента решетки либо их сильным взаимным влиянием, либо учетом обоих факторов. Все эти ситуации наиболее четко проявляются при исследовании дифракционных свойств решетки из незамкнутых круговых цилиндров. Строгое решение задачи дифракции плоских Е- и Я-поляризованных электромагнитных волн на такой решетке получено в [193]. Установлено, что данная решетка так же, как и ее отдельный элемент (круговой цилиндр с продольной щелью произвольных размеров), обладает квазисобственными колебаниями. Возбуждение последних падающей волной приводит к резонансному изменению коэффициентов прохождения и отражения.  [c.131]

Возможность применения полупроводников для целей усиления и возбуждения электромагнитных колебаний была впервые открыта советским изобретателем О. В. Лосевым в 1922 г. За последнее время в связи с разработкой новых, более совершенных типов полупроводниковых материалов, и в частности германия, стали изготовляться технически весьма совершенные триоды и даже тетроды. Германиевые триоды дают коэффициент усиления по мощности до 10 их максимальная рабочая частота достигает 200 Мгц иитервал рабочих температур от —40° до +80° С к. п. д. 50% срок службы до 100 000 ч выходная мощность 2 вт при ничтожно малых размерах триода (объем не более 30 мм ).  [c.200]

При возбуждении электромагнитной волной соответствующей длины Го-моды возникает сильное взаимодействие с решеткой. В случае отсутствия свободных носителей при этой длине волны наблюдается значительное отражение. Прохождение излучения через образец является более сложным процессом. При отражении волны от поверхности твердого тела происходит изменение фазы на л, при внутреннем же отражении фаза остается постоянной. Если оптический путь волны и поглощение достаточно малы, в отраженной волне будут наблюдаться сильные интерференционные явления. При сильном же поглощении луч, отраженный от внутренней границы, будет слабым, и интерференция будет слабой. В результате этого интенсивность отраженной волны будет значительной, а пропускание уменьшится. ГО-мода с нулевым волновым числом обычно обладает малым коэффициентом затухания и линия поглощения бывает довольно острой. Таким образом, можно ожидать узких минимумов на кривой пропуск -ния при исследовании тонких пленок с помощью ГО-моды. Этим и объясняются наблюдения Барнса и Черни [132] в щелочно-га-лоидных кристаллах. Они обнаружили сильные искажения формы минимума на кривой пропускания для толстых кристаллов. Когда же были использованы пленки толщиной около микрона, наблюдался четкий минимум. В Na l оптический путь был мал ( 2 мкм) по сравнению с длиной волны поперечных оптических колебаний в Na l ( 65 мкм).  [c.390]

Идентификация форм колебаний образцов. При экспериментальных исследованиях часто бывает необходимо отнести наблюдаемый резонанс образца или элемента конструкции к определенной моде колебаний. Если возбудитель и приемник находятся в пучностях колебаний, то амплитуда колебаний наибольшая, и наоборот, она минимальна вблизи узловых линий. Это в частности следует из формул (3.31)-(3.34), в соответствии с которыми при возбуждении и регистрахщи колебаний точечными преобразователями, не возмущающими колебаний (например, электромагнитными), амплитуда колебаний пропорциональна произведению мод колебаний в точках возбуждения и регистрации. Таким образом, последовательно перемещая возбудитель и регистратор, например излучающий и приемный волноводы, по поверхности образца, можно определить пучности и узловые линии. Необходимо при этом учитывать чувстви-  [c.78]

При выводе и анализе формул Френеля можно не учитывать временные множители векторов напряженности электрического и магнитного полей и формулировать граничные условия для соответствующих проекций амплитуд векторов Е и Н, учитывающих начальные фазы колебаний. Неполяризованный свет будем рассматривать по-прежнему как сумму двух плоских волн, распространяющихся в одном направлении с одной фазовой скоростью и, но поляризованных в двух взаимно перпендикулярных направлениях, причем фазы этих двух колебаний никак не скоррелированы. Таким способом можно моделировать хаотическую суперпозицию различных эллиптически поляризованных электромагнитных волн, обусловленную реальными условиями возбуждения световых волн.  [c.82]

Очевидно, что чем больше га, тем удобнее наблюдение явления. Для рентгеновских лучей, у которых п < 1, эффект исключается. Особенностью эффекта Вавилова - Черснкова является то, что характерное свечение возникает при равномерном движении возбуждающих его частиц со скоростью и > с/п. Это бесспорный факт и простые оценки показывают, что потерей энергии этих частиц на возбуждение свечения можно пренебречь. Таким образом, свечение среды связано с возбуждением частицами постоянной скорости, что как бы противоречит фундаментальному положению (см. 1.5) о том, что для излучения электромагнитной энергии необходимо ускоренное движение частиц. Но при этих рассуждениях нужно учитывать, что в изложенной выше простейшей модели явления излучают не налетающие частицы, а атомные электроны, движение которых носило характер вынужденных колебаний, т. е. имело отличное от нуля ускорение.  [c.173]

Для объяснения гигантского резонанса были рассмотрены (в Советском Союзе А. Б. Мигдалом) колебания ядра под действием электромагнитного поля у-квантов. Вообще говоря, при этом возможны колебания дипольные (все протоны ядра сдвигаются относительно всех нейтронов) и квадрупольные (изменение формы ядра), отно-сительная роль которых различна при разных энергиях возбуждения ядра. Теория показывает, что при рассматриваемых возбуждениях ядра (порядка 10 Мэе) вероятность ди-польных колебаний заметно превосходит вероятность квадрупольных колебаний.  [c.475]

Решеточное поглощение наблюдают в ионных кристаллах или в кристаллах, в которых связь между атомами в какой-то степени является ионной (например, в бинарных полупроводниках InSb, GaAs и т. д.). Такие кристаллы можно рассматривать как набор электрических диполей. Эти диполи могут поглощать энергию электромагнитного (светового) излучения. Наиболее сильным поглощение будет тогда, когда частота излучения равна частоте собственных колебаний диполей. Поглощение света, связанное с возбуждением колебаний кристаллической решетки, называют решеточным. Решеточное поглощение наблюдают в далекой инфракрасной области спектра.  [c.312]

Кроме спонтанного испускания и поглощения Эйнштейн ввел представление о вынужденном (индуцированном или стимулированном) испускании. Под действием внешнего электромагнитного поля атомы, находящиеся в возбужденном состоянии (например, на уровне 2), могут согласно Эйнштейну либо поглощать энергию, переходя на более высокий уровень, либо, наоборот, отдавать энергию к = Ё2— ь возвращаясь на более низкий уровень энергии. Такие переходы являются вынужденными и обусловливают вынужденное испускание. Вероятность этих переходов в единицу времени есть 2lWv Величина Б21 называется коэффициентом Эйнштейна для вынужденного испускания. Если внешнее поле отсутствует (и = 0), то вынужденные переходы не происходят. Таким образом, внешнее электромагнитное поле вызывает переходы, сопровождающиеся как поглощением, так и испусканием энергии. Следует отметить, что существование вынужденного испускания не противоречит и классической теории. Согласно законам электродинамики электромагнитная волна, падающая на колеблющийся диполь, в зависимости от соотношения фаз их колебаний может усиливать или тормозить колебания диполя. Иными словами, излучение, падающее на атом, может заставлять последний не только поглощать, но и испускать соответствующие кванты энергии.  [c.143]


С классической точки зрения волна, коттэрая удовлетворяет этому дисперсионному соотношению, может иметь любую амплитуду (в пределах выполнения закона Гука). В то же время для колебаний решетки, как и для квантов электромагнитного излучения, характерен корпускулярно-волновой дуализм. Корпускулярный аспект колебаний решетки приводит к понятию фонона, и прохождение волны смещения атомов в кристалле можно рассматривать как движение одного или многих фононов. При этом каждый фонон переносит энергию Ксй, где Ь = Ь/2я= 1,0546-эрг-с Н — постоянная Планка, и импульс Ьк. Теплопроводность, рассеяние электронов и некоторые другие процессы в твердых телах связаны с возникновением и исчезновением фононов, т. е. корпускулярный аспект таких процессов- так же важен, как и волновой. Проявление дискретной (корпускулярной) природы энергии возбуждения в других явлениях зависит от того, насколько велико количество термически возбужденных фононов.  [c.36]

Открытие фотоэффекта. При генерации электромагнитных волн посредством возбуждения электрических колебаний в открытом контуре с разрядником Г. Герц обнаружил (1887), что длина искры между металлическими электродами разрядника увеличивается, если катод освещается ультрафиолетовым светом. Другими словами, падающий на металлический катод ультрафиолетовый свет облегчает проскакивание искры между катодом и анодом. Это наблюдение положило начало экспериментальным работам В. Гальвакса, А. Столетова, П. Ленар-да и др., в которых была выяснена физическая сущность наблюдаемого явления и установлены его основные количественные характеристики. Само явление получило название внешнего фотоэффекта.  [c.18]

Для возбуждения колебаний применяют преобразователи различных систем электродинамические, магнито-стрикционные, электромагнитные,, пьезоэлектрические и др. Свободные колебания возбуждают одиночными или периодическими ударами по контролируемому изделию. Для приема используют микрофоны, емкостные, электромагнитно-акустические, пьезоэлек-трическке и другие преобразователи.  [c.289]


Смотреть страницы где упоминается термин Колебания Возбуждение электромагнитное : [c.402]    [c.211]    [c.183]    [c.748]    [c.271]    [c.252]    [c.193]    [c.499]    [c.3]    [c.281]    [c.681]    [c.427]    [c.533]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.385 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.385 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.3 , c.38 , c.385 ]

Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.3 , c.38 , c.385 ]



ПОИСК



Возбуждения

КОЛЕБАНИЯ Возбуждение

Колебания электромагнитные

Машины с электромагнитным возбуждением колебаний для испытания на изгиб и кручение — Техническая характеристика

Т р и г у б о в и ч Б. В., Бородич А. К. О возбуждении ультразвуковых колебаний электромагнитно-акустическим методом при повышенных температурах

Электромагнитные



© 2025 Mash-xxl.info Реклама на сайте