Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полупроводники применение

За время после публикации американского издания книги появилось много статей, указывающих на значительные изменения и в направлении исследований и в понимании природы жидких полупроводников. Применение высоких давлений позволило значительно расширить область экспериментальных исследований, так что одна и та же жидкость может быть изучена в широкой области, в которой ее свойства изменяются от почти диэлектрических до металлических [302, 317, 318]. Возросло количество исследований, которые дают более прямую информацию о молекулярной и электронной структуре жидких полупроводников по сравнению с информацией, получаемой из данных по изучению кинетических свойств [319—324].  [c.8]


Очевидно, что для правильного использования термометров сопротивления нет необходимости в детальном понимании процессов электропроводности. Однако исследования, направленные на улучшение воспроизводимости результатов измерений, расширение диапазона применения термометров, едва ли будут эффективными без общего знакомства с теоретическими основами их работы. Прежде чем приступить к описанию характеристик и практического использования основных типов термометров сопротивления, рассмотрим кратко теорию электропроводности чистых металлов, сплавов и полупроводников.  [c.186]

Сварочные выпрямители. Это источники постоянного сварочного тока, состоящие из сварочного трансформатора с регулирующим устройством и блока полупроводниковых выпрямителей (рис. 31). Иногда в комплект сварочного выпрямителя входит еще дроссель, включаемый в цепь постоянного тока. Дроссель служит для получения падающей внешней характеристики. Действие сварочных выпрямителей основано на том, что полупроводниковые элементы проводят ток только в одном направлении. Наибольшее применение в сварочных выпрямителях получили селеновые и кремниевые полупроводники. Сварочные выпрямители выполняют в подавляющем большинстве случаев по трехфазной схеме, преимущества которой заключаются в большом числе пульсаций напряжения и более равномерной загрузке трехфазной сети.  [c.61]

ПРИМЕНЕНИЕ АМОРФНЫХ ПОЛУПРОВОДНИКОВ  [c.369]

Аморфные диэлектрики в виде тонких пленок находят широкое применение в микроэлектронике. Во многих таких диэлектриках,, так же как и в аморфных полупроводниках, проводимость (весьма незначительная ) осуществляется путем перескоков из одного локализованного состояния в другое. Энергия активации этого процесса значительно ниже, чем энергия активации примесной проводимости в кристаллических диэлектриках.  [c.371]

Фотогальванический эффект. Этот вид фотоэффекта состоит в появлении на границе металла и полупроводника или на границе двух полупроводников электродвижущей силы. Он был открыт в 1888 г. Ульяниным, однако его практическое применение началось только в конце 20-х гг. Схема опыта наблюдения и изучения фотогальванического эффекта показана на рис. 26.15.  [c.169]

К. п. д. термогенераторов сравнительно низкий и составляет 3—5%, а в лучшем случае 8%. А. Ф. Иоффе считал, что этот предел в ближайшее время может повыситься до 10—12%, а может быть и до 15% при источниках теплоты порядка 700—800° С. Если учесть, что наиболее совершенные тепловые электростанции достигают уже к. п. д. 40—45%, то становится ясным, что термоэлементы из твердых полупроводников не могут быть использованы в большой энергетике . Зато по мере упрощения технологии, уменьшения толщины термобатарей и их удешевления будет расти применение термоэлектрических генераторов в малой энергетике (где к. п. д. отступает на задний план по сравнению с простотой конструкции, массой и габаритами) и в утилизации тепловых отходов высокотемпературных тепловых машин.  [c.606]


Полупроводники с узкой запрещенной зоной и их применение Пер. с англ. М. Мир. 1969.  [c.540]

Применение однородных полупроводников. Очень сильная зависимость проводимости полупроводников от температуры делает возможным создание с их помощью очень чувствительных термометров и устройств, с помощью которых можно контролировать силу тока в цепи. Такие прибо-  [c.355]

Поскольку при переходе от кристаллического состояния к некристаллическому ближний порядок в расположении атомов сохраняется, это положение позволяет применять понятия запрещенной и разрешенных энергетических зон (валентной зоны, зоны проводимости) для описания энергетических состояний электронов в некристаллических полупроводниках. Однако возможность применения этих понятий не означает, что энергетические зоны в кристаллических и некристаллических полупроводниках имеют одинаковое строение. Отсутствие дальнего порядка в расположении атомов, хотя и не затрагивает само существование энергетических зон, приводит к существенному перераспределению в них разрешенных энергетических уровней.  [c.10]

Вместе с тем исследования последних лет показали, что для изготовления термометров сопротивления могут быть использованы некоторые полупроводники, так как их температурный коэффициент электрического сопротивления оказался на порядок выше, чем у чистых металлов, поэтому в настоящее время полупроводниковые термометры сопротивления находят применение при измерении низких температур (1,3... 400 К).  [c.31]

Диапазон изменения электросопротивления у полупроводниковых материалов весьма широк (р = 10 - - 10 ом-см) однако материалы характеризуются некоторыми другими специфическими свойствами, отличающими их от металлов и изоляторов, Например, если электросопротивление металлов возрастает с повышением температуры, то у полупроводниковых материалов оно падает, т. е. полупроводники в большинстве случаев обладают отрицательным температурным коэффициентом электросопротивления примеси уменьшают электропроводность металлов, но увеличивают проводимость полупроводниковых материалов. Полупроводники обладают фотопроводимостью, т. е. при действии излучений у них возникают дополнительные свободные носители заряда. В приборной технике полупроводники нашли широкое применение, поскольку они могут служить выпрямительными элементами, генерировать огромные термо-э. д. с., усиливать ток, позволяют увеличить ресурс и надежность электронных устройств, уменьшить размеры и вес приборов, а также сократить потребление электрической энергии.  [c.279]

В плане отражены проблемные вопросы совершенствования производства стали, цветных металлов и полупроводниковых материалов, порошковой металлургии, защиты металлов и сплавов от коррозии Применение пульсирующего дутья при производстве стали , Проблемы совмещения горячей деформации и термической обработки стали , Процессы жидкостной экстракции в цветной металлургии , Безокислительный нагрев редких металлов и сплавов в вакууме , Структурные дефекты в эпитаксиальных слоях полупроводников , Феноменология спекания , Коррозионная усталость металлов , Защита от коррозии силикатами .  [c.3]

Наиболее важные технические применения полупроводников основаны на создании в одном куске материала контактирующих областей с различными типами электропроводимости р — п-пере-ходов), с одним типом электропроводности, но различной величины  [c.250]

В современных устройствах, предназначенных для работы в условиях облучения, используют материалы различных классов и химической природы (металлы, полупроводники, органические и неорганические системы, полимеры и т. д.) механизм воздействия излучения на эти материалы различен. В связи с тем, что трудно найти универсальный подход к описанию радиационных эффектов в различных материалах, целесообразно рассматривать радиационное воздействие на отдельные группы материалов, объединенных либо общностью химической природы, либо областью применения.  [c.7]

Поскольку концентрация и время жизни носителей тока в данном полупроводниковом приборе специально контролируются в процессе его изготовления, то эти характеристики предопределяют конкретную область применения прибора. Отклонения от заданных условий работы приводят к изменениям рабочих характеристик прибора, а они в свою очередь могут повлиять на работу всей цепи, в которую он входит. Иначе говоря, электрические свойства полупроводников зависят от типа и количества нарушений в кристаллической решетке. Поэтому не удивительно, что высокоэнергетические частицы, вызывая образование структурных дефектов и ионизацию атомов при прохождении через кристаллическую решетку, резко изменяют электрические свойства полупроводников. Ниже мы будем рассматривать как дефекты любые отклонения от нормальной кристаллической решетки и, в частности, инородные атомы, вакантные места в решетке (вакансии), промежуточные атомы (междоузлия), электроны и дырки в количествах, превышающих их равновесные концентрации, и т. д. Эти нарушения кристаллической решетки можно рассматривать как точечные, а нарушения другого типа — дислокации — как линейные дефекты.  [c.278]


Изменения оптических свойств могут проявляться либо косвенно, через изменение концентрации носителей, либо непосредственно — через образование полос поглощения. Обычно снижение концентрации носителей увеличивает прозрачность полупроводников в области длин волн, лежащей за пределами края основного поглощения. Эта область включает инфракрасную область, представляющую интерес для некоторых военных применений. Кроме того, в полупроводниках полосы поглощения можно непосредственно ввести в инфракрасную область с помощью дефектов, образующихся под действием облучения в отличие от большинства изоляторов, в которых вакансии и междоузлия, называемые центрами окраски, создают сильные полосы поглощения в видимой области спектра.  [c.283]

Полупроводники, содержащие одновременно донорную и акцепторную примеси. Широкое практическое применение получили полупроводники, содержащие одновременно донорную (Nj ) и акцепторную (iVa) примеси. На рис. 6.6 показана зонная структура такого полупроводника. Так как электроны стремятся занять наинизшие энергетические состояния, то они переходят с донорных атомов на акцепторные. Если концентрация доноров Л д больше, чем акцепторов N , то все акцепторные уровни оказываются занятыми электронами с донорных центров и не могут принимать электроны из валентной зоны. В то же время оставшиеся Л д — Мц доноров могут отдать свои электроны в зону проводимости, так что в целом такой полупроводник будет иметь проводимость п-тина. Происходит как бы компенсация акцепторов донорами.  [c.168]

Следует указать, что область применения уравнения ВАХ (8.46) ограничивается для прямых смещений напряжениями, при которых еще существует потенциальный барьер перехода (qV < фо) н его сопротивление много больше сопротивления п- и р-областей полупроводника. Для обратных смещений это уравнение выполняется до напряжений, меньших пробивных. Кроме того, при выводе этого уравнения мы пренебрегали тепловой генерацией и рекомбинацией носителей заряда в самом слое объемного заряда, считая era узким. Наконец, при практическом использовании выражения (8.46) надо помнить, что температура Т, входящая в это выражение, представляет собой температуру р—п-перехода, которая в процессе его работы может существенно отличаться от температуры окружающей среды.  [c.228]

Термоэлектрический эффект получил широкое практическое применение, в том числе 1и в радиоэлектронике. Он позволяет непосредственно преобразовывать тепловую энергию в электрическую, что используется в термогенераторах. Теория таких генераторов была разработана А. Ф. Иоффе. Согласно этой теории, к. п. д. преобразования тепловой энергии в электрическую определяется величиной а а/К, где К — коэффициент теплопроводности полупроводника ст — удельная электропроводность.  [c.262]

Эффекты поглощения света в полупроводниках находят практическое применение для создания модуляторов световых потоков, фотоприемников и преобразователей световой энергии в электрическую.  [c.324]

В связи с развитием техники полупроводников за границей с 50-х годов наметилась тенденция применения для сварки источников питания с полупроводниковыми выпрямителями (селеновыми, германиевыми, кремниевыми), выгодно отличающимися отсутствием вращающихся частей и трущихся контактов, меньшим весом и стоимостью, большим к. п. д., бесшумностью работы и относительно низкими эксплуатационными расходами. С начала 60-х годов в СССР стали применять отечественные преобразователи с селеновыми и кремниевыми выпрямителями, разработанные ВНИИЭСО и выпускаемые заводом Электрик .  [c.137]

Широчайший интерес, который вызвали квантовые генераторы, привел к быстрым успехам в этой области. Выли созданы генераторы на основе применения самых различных кристаллов и газов. Но оставался еще не использованным большой класс веществ — полупроводников.  [c.413]

Расширение области применения полупроводников потребовало создания специальных отраслей промышленности. Часть этих отраслей прямо относится к производству этих приборов, а часть самым тесным образом связана с получением сверхчистых веществ в широкой номенклатуре (алюминий, золото, галлий, бор, фосфор, мышьяк, сурьма и др.) и сверхчистых реагентов (кислоты, щелочи и т. п.).  [c.420]

Исследования АПР представляют интерес, поскольку тепловое движение атомов, дефекты кристаллич. структуры и ряд других факторов по-разному влияют на форму линий АПР и ЭПР. Из спектров АПР, к-рые по форме могут отличаться от спектров ЭПР, можно получить дополнительную информацию о симметрии локального внутрикристаллич. поля парамагнитного кристалла. Исследование формы линий АПР позволяет оценить влияние нарушения симметрии кристаллич. поля в результате наличия дислокаций и случайных деформаций решётки. Эти факторы, вообш,е говоря, приводят к ушире-нпю линий АПР по сравнению с линией ЭПР. АПР используется для исследований металлов и полупроводников, применение метода ЭПР в к-рых затруднено из-за скин-эффекта. Метод АПР позволяет непосредственно измерять параметры спин-фононного взаимодействия. Такие измерения проводятся с моночастотным звуком определённой поляризации  [c.28]

При диффузионном соединении полупроводниковых кристаллов с молибденом, покрытым золотом, серебром или никелем, функциональные зависимости — = f (р) носят гиперболический характер (рис. 7, кривая IV), указывая, что кинетика роста прочности соединения идет за счет взаимной диффузии быстродиффун-дирующих металлов покрытия в кристаллическую решетку алмазоподобных полупроводников. Применение никеля, как покрытия на молибдене, снижает температуру сварки для кремния и германия на 300 К, арсенида галлия на 450 К (рис. 8, кривая /), карбида кремния на 400 К при одинаковом давлении 39,2 МПа. Нижние асимптоты гиперболических кривых находятся для кремния, германия и арсенида галлия на уровне температуры 673 К, а для карбида кремния — 823 К. Таким образом, диффузионное соединение не образуется при температуре Тсв <С (0,Эч-0,4) даже при применении такого быстродиффундирующего металла,, как никель. Применение серебряного покрытия на молибдене позволяет снизить температуру сварки в 0,2—1,4 раза, т. е. довести ее до 773 К для кремния и 973 К для карбида кремния без изменения давления или уменьшить давление сжатия в 2—3 раза (19,6—9,8 МПа). Диффузионную сварку кремния и германия с серебряным молибденом нельзя вести выше температур соответственно 1103-и 924 К, так как при этом образуются эвтектические сплавы в месте контакта соединяемых материалов (рис. 7, область III). Между температурой сварки Тен и давлением сжатия р при ДСВ чистого кремния с посеребренным молибденом установлена эмпирическая зависимость  [c.235]


Применение электрофизических и электрохимических способов размерной обработки материалов, предназначенных главным образом для отраслей новой техники, где широко применяются жаропрочные, нержавеющие, магнитные и другие высоколегированные стали и твердые сплавы, полупроводники, рубины, алмазы, кварц, ферриты и другие материалы, обработка которых обычными механическими способами затруднительна или часто невозможна. К числу электрофизических способов обработки относятся электроискровая, электроим-пульсная, электроконтактная и анодно-механическая.  [c.122]

Широкое практическое применение находят неорганические кристаллические люминофоры, называемые кристал-лофосфбрами или, проще, фосфорами (не надо путать с химическим элементом фосфором ). Они используются, например, в светящихся циферблатах часов. Кристаллофос-форы синтезируют, прокаливая специально приготовленные смеси, включающие в себя основное вещество и примеси активаторов, играющих роль центров люминесценции. Все кристаллофосфоры относятся к диэлектрикам или полупроводникам.  [c.184]

Зонная теория твердого тела удовлетворительно объясняет специфические особенности полупроводникав. Эта теория является следствием применения квантовой механики к проблеме твердого тела, но зонная модель распространяется и на апериодическое поле, свойственное некристаллическим веществам. Наличие жидких и аморфных полупроводников свидетельствует о том, что полупроводниковые свойства в первую очередь определяются природой химической связи данного атома с его ближайшим окружением, т. е. ближний порядок является определяющим. Разумно под термином химическое строение понимать совокупность энергетических, геометрических и квантовохимических характеристик вещества (порядок, длина и энергия связи, рашределение и пространственная направленность электронных облаков, эффективные заряды и т. д.). Но главным в учении о химическом строении является природа химической связи всех атомов, входящих в состав данного вещества.  [c.94]

Одновременно с переходом П — АФ в происходит переход металл — полупроводник. При Т Т электропроводность меняется на девять-десять порядков. Описание электронной структуры и обзор магнитных свойств VgOa см. в книге Бугаев А. А., За харченя Б. М., Чудновскнй Ф. А. Фазовый переход металл — полупроводник и его применение. Л. Наука, 1979.  [c.655]

РЕНТГЕНОВСКАЯ ТОПОГРАФИЯ, использующая тот же эффект дпфракциопиого контраста, что и просвечивающая электронная микроскопия, также позволяет наблюдать отдельные дислокации. Но из-за малой разрешающей способности она применима лишь к монокристаллам с плотностью дислокаций не выше 10 — 10 см . Поэтому этот метод не может сколько-нибудь широко использоваться для изучения дислокационной структуры металлов и сплавов. Основная область применения метода — анализ дислокационной структуры совершенных монокристаллов полупроводников (кремний, германий и др.).  [c.99]

Германий как полупроводник играет важную роль в полупроводниковой электронике. В этой области инфоко используют германий для изготовления кристаллических выпрямителей (диодов) и кристаллических усилителей (триодов или транзисторов]. Кристаллические выпрямители и усилители обладают рядом преимуществ перед электронными лампами потребляемая ими мощность значительно ниже, чем у вакуумных ламп, а poir их службы длительнее они отличаются большей механической устойчивостью по отношению к вибрациям и ударам, чем электронные лампы, и имеют по сравнению с ними значительно меньшие размеры. Это делает особенно перспективным их применение в сложных счетных машинах, телемеханике, радарных установках и т. п.  [c.531]

Четвертый метод — диффузии сводится к lla ыы e-ниго поверхностного слоя полупроводника при достаточно высокой температуре донорной или акцепторной примесью из газовой фазы, или из предварительно напыленного слоя. Получение заданных размеров и формы р- -перехода достигается применением масок. Рассмотренные методы применяют также для получения в кристалле областей с различной величиной удельной проводимости.  [c.185]

Карбидами называют соединения углерода с другими элементами. Широкое применение имеет карбид кремния Si —карборунд—ио-ликристаллический полупроводник. Карборунд получают в электрических печах при температуре 2000° С из смеси двуокиси кремния SiOa и угля. Кристаллы карборунда гексагональной структуры в чистом виде бесцветны, но благодаря примесям технический материал имеет светло-серую или зеленоватую окраску. При нормальных условиях энергия запрещенной зоны = 2,86 эв. Характер электропроводности определяется составом примесей или отклонением от стехио-метрического состава Si . Электронная проводимость получается при избытке Si, а также при наличии примесей из V группы — фосфора, мышьяка, сурьмы, висмута или азота. Дырочная проводимость достигается при избытке С и наличии примесей элементов II группы (Са, Mg) и III группы (А1, In, Ga, В). При введении примесей изменяется также окраска карборунда. Подвижность носителей низкая гг = = 100 см 1в-сек. Up = 20 см /в-сек. Порошкообразный карборунд применяют для изготовления нагревателей электрических печей с температурой до 1500° С. Кроме того, из него изготовляют нелинейные объемные резисторы — варисторы, в которых значение R падает с ростом приложенного напряжения (рис. 14.2). Нелинейность таких резисторов резко вырастает при одновременном введении небольших примесей алюминия (IM группа) и азота (V группа), вблизи точки перехода  [c.188]

Полупроводники этой группы представляют собой соединения селена и теллура с некоторыми другими металлами (см. 14.7). При избытке металла (РЬ, Hg, Bi, d) по отношению к стехиометрической формуле получается электронная проводимость, при избытке селена или теллура — дырочная. В качестве легирующих присадок используются также некоторые соединения. Все эти проводники нмеют низкую энергию запрещенной зоны порядка ГО" эв, кроме dTe с W = 1,5 эв. Главной областью применения полупроводников этой группы являются термоэлектрические генераторы и холодильники, где важной характеристикой служит эффективность  [c.191]

Эффект Эттингсгаузена может быть использован в тех же устройствах, что и эффект Пельтье, — в устройствах кондиционирования воздуха, охлаждения, термостатирования и т. п., где требуется перекачка тепла. При этом материал, используемый для этих целей, так же как и в элементах Пельтье, должен обладать по возможности меньшей теплопроводностью, чтобы перетекание тепла от горячей грани образца к холодной было затруднено. Однако требования к комбинации других параметров полупроводника несколько иные, чем при использовании эффекта Пельтье. Поэтому в некоторых случаях применение эффекта Эттингсгаузена является предпочтительным по сравнению с эффектом Пельтье.  [c.271]

Селениды. Несомненны аналогии в свойствах и применении селенидов и сульфидов некоторых d-элементов. В частности, представляют интерес МоЗег, NbSea, TaSeg, являющиеся полупроводниками и смазочными веществами [92]. Свойства некоторых селенидов и теллуридов описаны в [89].  [c.19]

Наиболее ранними полупроводниковыми приборами, вошедшими в практику, были германиевые или кремниевые радиолокационные детекторы. Изучение их свойств, получение опыта их использования и достижения теории полупроводников создали условия для появления транзисторов и развития транзисторной электроники (1948 г.). Основными задачами ее были (да и продолжают оставаться) повышение рабочих частот транзисторов, увеличение отдаваемой ими мощности и увеличение рабочих напряжений для тех случаев, где в том встречается необходимость. В начале 50-х годов промышленностью уже были освоены высокочастотные маломощные транзисторы (рис. 71), и они сразу нашли себе применение в приемных устройствах. Вскоре появились смесительные диоды, используемые в сунергетеро-  [c.382]



Смотреть страницы где упоминается термин Полупроводники применение : [c.91]    [c.123]    [c.21]    [c.471]    [c.189]    [c.191]    [c.224]    [c.342]    [c.220]    [c.414]    [c.540]   
Температура и её измерение (1960) -- [ c.8 ]



ПОИСК



Общие свойства и применение полупроводников

Полупроводники

Применение аморфных полупроводников

Различные применения полупроводников



© 2025 Mash-xxl.info Реклама на сайте