Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волновая оптика (световые волны)

ОТДЕЛ V. гл, 2. ВОЛНОВАЯ ОПТИКА (СВЕТОВЫЕ ВОЛНЫ)  [c.364]

ВОЛНОВАЯ ОПТИКА (СВЕТОВЫЕ ВОЛНЫ)  [c.364]

В такой первоначальной форме принцип Гюйгенса говорит лишь о направлении распространения волнового фронта, который формально отождествляется с геометрической поверхностью, огибающей вторичные волны. Таким образом, речь идет собственно о распространении этой поверхности, а не о распространении волн, и выводы Гюйгенса относятся лишь к вопросу о направлении распространения света. В таком виде принцип Гюйгенса является, по существу, принципом геометрической оптики и, строго говоря, может применяться лишь в условиях пригодности геометрической оптики, т. е. когда длина световой волны бесконечно мала по сравнению с протяженностью волнового фронта. В этих условиях он позволяет вывести основные законы геометрической оптики (законы преломления и отражения). Рассмотрим для примера преломление плоской волны на границе двух сред, причем скорость волны в первой среде обозначим через 01, во второй — через  [c.19]


По существу работами Френеля была поставлена на твердую почву волновая оптика, разъяснены в основных чертах все существеннейшие трудности, представляемые явлениями дифракции, и выяснено значение длины световой волны для этих явлений.  [c.170]

Понятие светового луча можно получить из рассмотрения реального светового пучка в однородной среде, из которого при помощи одной или последовательности диафрагм с отверстиями выделяется узкий параллельный пучок. Чем меньше диаметр этих отверстий, тем уже выделяемый пучок, и в пределе, переходя к отверстиям сколь угодно малым, можно казалось бы получить световой луч как прямую линию. Мы знаем, однако, что подобный процесс выделения сколь угодно узкого пучка (луча) невозможен вследствие явления дифракции. Неизбежное угловое расширение реального светового пучка, пропущенного через диафрагму диаметра О, определяется углом дифракции ф к/О (направление на 1-й минимум, см. 39). Только в предельном случае, когда = О, подобное расширение не имело бы места, и можно было бы говорить о луче как о геометрической линии, направление которой определяет направление распространения световой энергии. Таким образом, световой луч есть абстрактное математическое понятие, а не физический образ, и геометрическая оптика есть лишь предельный случай реальной волновой оптики, соответствующий исчезающе малой длине световой волны.  [c.272]

Оптические исследования — это прежде всего исследования физики взаимодействия света с веществом. Существуют три последовательных уровня рассмотрения указанного взаимодействия, три постепенно углубляющихся подхода I) классический, 2) полуклассический, 3) квантовый. На первом уровне оптическое излучение представляют в виде световых лучей или электромагнитных волн в соответствующем диапазоне частот, а вещество описывают с использованием понятий и аппарата механики сплошных сред, термодинамики, классической электродинамики. Иными словами, при данном подходе как свет, так и вещество рассматриваются в рамках классической физики. Полуклассический подход предполагает квантование вещества при сохранении классической трактовки света классические световые волны взаимодействуют с коллективами атомов и молекул. Принимаются во внимание структура энергетических уровней атомов и молекул, энергетических зон кристаллов, статистика заселения различных квантовых состояний. Наконец, при квантовом подходе осуществляется квантование не только вещества, но и излучения именно такой подход используется в квантовой электродинамике. Если при рассмотрении взаимодействия света с веществом на классическом и полуклассическом уровнях учитывается только волновая природа света, то на квантовом уровне принимаются во внимание также и его корпускулярные (квантовые) свойства. Это отвечает переходу от классической оптики, имеющей дело с лучами и световыми волнами, к оптике, которую естественно назвать квантовой оптикой. Одним из основных понятий этой оптики является  [c.3]


Выполненные в начале XIX в. впечатляющие исследования по интерференции, дифракции и поляризации света сделали волновую концепцию в оптике практически безраздельно господствующей. Однако при этом возникали серьезные сомнения по поводу свойств той среды, в которой распространяются световые волны,— свойств упругого эфира.  [c.28]

Дифракционные явления свойственны всяким волновым процессам в частности, они наблюдаются и при распространении световых волн. Однако, так как длина световых волн очень мала (порядка 10 см), то препятствия даже малых, в обычном смысле, размеров все еще велики по сравнению с длиной световой волны. Поэтому-то в оптике так широко можно применять представление о луче и пользоваться законами геометрической оптики.  [c.718]

Процесс распространения нейтронных волн в веществе, как и всякий волновой процесс, во многом аналогичен распространению электромагнитных, в частности, световых волн. Нейтронные волны в веществе могут испытывать дифракцию, преломление, отражение (в том числе полное внутреннее), могут поляризоваться и т. д. Эта аналогия часто приводит к тому, что и методы расчета в ряде случаев аналогичны в нейтронной и обычной оптике. Например, в п. 2 мы увидим, что условия дифракции в обоих случаях одинаковы. Длины волн холодных нейтронов ненамного превышают межатомные расстояния. Поэтому распространение волн тепловых и холодных нейтронов в веществе более похоже на прохождение жестких рентгеновских волн, чем на распространение видимого света.  [c.550]

Значение уравнения в частных производных Гамильтона в теории распространения волн. Выше было выяснено, что уравнение в частных производных Гамильтона (8.7.17) в оптике выражает принцип Гюйгенса в дифференциальной форме. Хотя принцип Гюйгенса основан на предположении о волновом характере движения, построение с помощью этого принципа последовательности волновых фронтов является методом геометрической, а не физической оптики. Для того чтобы более глубоко изучить связь между уравнением в частных производных Гамильтона и принципами физической оптики, мы несколько преобразуем определение волнового фронта. До сих пор мы рассматривали волновые поверхности в связи с распространением элементарных световых возбуждений в геометрической оптике, однако они имеют не меньшее значение и в физической оптике при изучении распространения световой волны определенной частоты. При этом волновые поверхности могут быть определены как поверхности равной фазы. Скорость распространения света является в то же время скоростью распространения фазового угла, например ф, в направлении, перпендикулярном волновым поверхностям.  [c.315]

Открытие Гамильтона, согласно которому интегрирование дифференциальных уравнений динамики стоит в связи с интегрированием некоторого уравнения в частных производных первого порядка, основывалось на выводе результатов геометрической оптики, известных в корпускулярной теории, с точки зрения волновой теории, что имело большое значение в развитии физики своего времени. Теория Гамильтона интегрирования дифференциальных уравнений динамики есть прежде всего не что иное, как всеобщая аналитическая формулировка хорощо известного в физической форме соотнощения между световым лучом и световой волной. В силу изложенного здесь исходного положения делается понятной и та ненужно частная форма, в которой Гамильтон опубликовал свою теорию и из которой исходил Якоби. Гамильтон первоначально исходил в своих исследованиях систем лучей из практических запросов оптического приборостроения. В силу этого он рассматривал только такие световые волны, которые выходят из отдельных точек. Обобщение Якоби, вытекавшее отсюда, состояло в том, что для определения луча должны точно так же применяться и другие произвольные световые волны. Как известно, в оптике посредством так называемого принципа Гюйгенса из специальных волн строят общие  [c.513]


Используем теперь наши результаты для изучения того, как распространяются свободные световые кванты, скорость которых по величине всегда лишь ненамного меньше, чем с. Мы можем сказать атом света с полной энергией, равной hv, является областью внутреннего периодического явления, протекающего с точки зрения неподвижного наблюдателя всюду, в одной фазе с волной, распространяющейся по тому же направлению, что и атом света со скоростью, почти совпадающей со скоростью света с (немного большей). Световой квант является до известной степени частью этой волны для объяснения интерференции и других явлений волновой оптики нужно, однако, еще понять, каким образом частью одной и той же волны может быть несколько световых квантов. В этом заключается проблема когерентности.  [c.635]

Прежде чем объяснить физическую сущность явления фотоупругости, напомним о некоторых представлениях оптики. Согласно электромагнитной теории световые волны представляют собой поперечные волны, сущность которых заключается в периодическом изменении во времени электрической напряженности Е и магнитного поля Н. Векторы Е и Н взаимно перпендикулярны. Свет представляет собой переменное электромагнитное поле, которое распространяется вдоль линии, перпендикулярной к векторам Е и Н (рис. 27). Таким образом, три вектора Е, Н н скорость распространения волнового фронта V взаимно перпендикулярны. При этом векторы Е и Н могут быть произвольно ориентированы относительно линии распространения волнового фронта (луча).  [c.65]

Т. к. размеры нелинейного кристалла много больше длины световой волны, то процесс параметрич, возбуждения в оптике носит ярко выраженный волновой характер. Под действием электрич. поля Е световой волны большой интенсивности меняется диэлектрич. проницаемость 8 нелинейного кристалла г Яд in%E,  [c.539]

При нормальном ходе событий любой изучающий физику или технику знакомится с оптикой прежде всего на полностью детерминистской основе. При этом физические величины представляются математическими функциями, которые либо полностью заранее определены, либо предполагаются точно измеримыми. Эти физические величины подчиняются хорошо определенным преобразованиям, которые видоизменяют их полностью предсказуемым образом. Например, если монохроматическая световая волна с известным сложным распределением поля падает на прозрачное отверстие в соверщенно непрозрачном экране, то распределение поля, возникающего на некотором расстоянии от экрана, может быть вычислено точно с помощью хорошо известных дифракционных формул волновой оптики.  [c.12]

Термин нелинейная оптика был введен в научную литературу в середине 60-х гг. классиками этой новой главы оптики [1, 2] для обозначения волновой оптики интенсивных световых пучков лазерного излучения. Как видно, это более широкое определение, чем данное выше, В рамках этого, более широкого определения к нелинейной оптике относят, например, явление ВКР (лекция 10), в частности возбуждение первой стоксовой компоненты ВКР. Иногда предлагаются и еще более широкие определения ), Часто под термином нелинейная оптика имеют в виду лишь нелинейную волновую оптику, т. е, явления, возникающие при взаимодействии световой волны (или нескольких световых волн) с прозрачной средой, характеризуемой усредненными оп-  [c.134]

Рис. 19.1. Схема устройства для атомной оптики. Атомная волна распространяется через резонатор и взаимодействует (резонансным образом) с одной стоячей модой светового поля. Здесь изображена ситуация, когда атомный волновой пакет перекрывает много длин волн светового поля и поэтому может рассматриваться как плоская волна, распространяющаяся в -направлении. Рис. 19.1. Схема устройства для <a href="/info/249251">атомной оптики</a>. Атомная волна распространяется через резонатор и взаимодействует (резонансным образом) с одной стоячей модой <a href="/info/176085">светового поля</a>. Здесь изображена ситуация, когда атомный <a href="/info/22595">волновой пакет</a> перекрывает много <a href="/info/12500">длин волн</a> <a href="/info/176085">светового поля</a> и поэтому может рассматриваться как <a href="/info/10059">плоская волна</a>, распространяющаяся в -направлении.
По своей физической природе световые волны являются волнами электромагнитными. Поэтому волновая оптика непосредственно основывается на уравнениях Максвелла.  [c.17]

Такое идеальное изображение в действительности невозможно, т. к. даже в том случае, когда по законам геометрич. оптики все лучи должны были бы пересечься в одной точке, изображение будет иметь конечные размеры (порядка размеров световой волны) благодаря волновой природе света.  [c.71]

Волновая теория, конечно, не могла считаться полной, пока не была установлена природа световых колебаний, или колебаний мирового эфира, как говорили физики девятнадцатого (и отчасти первой четверти двадцатого) века. Они не сомневались, что эфир подчиняется обычным законам механики Ньютона и к нему применимы такие понятия, как плотность, упругость, пространственное перемещение, скорость, ускорение и пр. Они пытались вывести строение и свойства эфира из наблюдаемых явлений и экспериментально установленных законов оптики. Поперечность световых волн заставила приписать мировому эфиру свойства твердой среды. Это породило ряд трудностей, в частности в вопросе об отражении и преломлении света (подробнее см. 63). Нет необходимости останавливаться на этих трудностях и попытках их преодоления в теории эфира. Все это уже давно потеряло актуальность и сохранило лишь исторический интерес.  [c.28]

НЕЛИНЕЙНАЯ СРЕДА среда, отклик к-рой на действие внеш. возмущения нелинейно зависит от амплитуды возмущения. В Н. с. не выполняется суперпозиции принцип отклик на сумму возмущений не равен сумме откликов на отд. возмущения. Свойства Н. с. под действием мощного излучения (акустич., эл.-магн.) меняются и зависят от амплитуды воздействия, поэтому и распространение волн в Н. с, определяется их амплитудой. В результате возбуждаются волны, отличающиеся от падающих частотами, направлением распространения и состоянием поляризации. Это приводит к таким эффектам, как генерация гармоник, сложение и вычитание частот, самовоздействие и кроссвзаимодействие, нелинейное отражение и т. д. Практически все среды при больших амплитудах падающих волн проявляют нелинейные свойства. В нелинейной оптике Н. с. широко используются для преобразования частоты и волновых фронтов световых волн. Подробнее см. Волны, Нелинейная акустика, Нелинейная оптика, Нелинейные явления в плазме. к. Н. Драбовш.  [c.309]


О проводится полуокружность радиусом ОС = U2M ( где М — время, которое должна была затратить волна, чтобы пройти путь АВ в первой среде). Очевидно, что АВ = ujAt и ОС = uz/u )AB. Ту же операцию можно повторить для точек 0 , О и т.д. Огибающей всех этих полуокружностей служит прямая BD, перпендикуляр к которой (луч) составляет угол ф2 с нормалью к границе раздела. Отсюда получаются законы отражения и преломления световых волн, и, следовательно, из принципа Гюйгенса можно вывести законы геометрической оптики. Вопрос о том, почему этот принцип (без дополнений, сделанных Френелем) нельзя положить в основу волновой оптики, подробно рассмотрен в гл. 6.  [c.132]

В математической физике доказывается законность замены волнового импульса суммой (конечной или бесконечной) монохроматических волн. Но при изложении этого важнейшего раздела волновой оптики представляется целесообразным сначала рассмотреть ее основы более наглядно, используя упрощенную модель источника световых волн. При этом можно оценить те границы, в которых может быть использована синусовдальная идеализация. Но прежде всего нужно определить основные понятия и проанализировать, как они проявляются в эксперименте.  [c.175]

В волновой оптике вопрос о преломлении и поглощении световых волн исследуется путем решения уравнений Максвелла с соответствующими граничными условиями. Вопрос о взаимодействии нуклона с ядром также исследуется путем решения уравнения Шре-дннгера при наличии комплексного потенциала.  [c.198]

Эта теорема имеет следующий смысл. Представим себе семейство механических траекторий, каждая из которых соответствует одной и той же полной энергии Е и все они начинаются на некоторой заданной поверхности 5 = 0. Для этих траекторий можно найти бесконечное семейство поверхностей S = onst, к которым траектории будут перпендикулярны. Мы говорим, что механические траектории обладают свойством лучей , потому что они ведут себя точно так же, как лучи света в оптике. Световые лучи характеризуются тем, что они везде перпендикулярны волновым поверхностям (фронту волны). То же самое справедливо для механических траекторий консервативной системы их можно рассматривать как ортогональные траектории семейства поверхностей S= onst.  [c.305]

ОПТИКА [ асферическая содержит элементы, поверхности которых, не имеют сферической формы просветленная обладает уменьшенными коэффициентами отражения света у отдельных ее элементов путем нанесения на них специальных покрытий) как оптическая система (волновая изучает явления, в которых проявляется волновая природа света волоконная рассматривает передачу света и изображений по световодам и пучкам гибких оптических волокон геометрическая изучает законы распространения света в прозрачных средах на основе представлений о световых лучах интегральная изучает методы создания и объединения оптических и оптоэлектронных элементов, предназначенных для управления световыми потоками квантовая изучает явления, в которых при взаимодействии света и вещества существенны квантовые свойства света и атомов вещества когерентная изучает методы создания узконаправленных когерентных пучков света и управления ими нелинейная изучает распространение мощных световых пучков в оптически нелинейных средах (твердые тела, жидкости, газы) и их взаимодействие с веществом силовая изучает воздействие на твердые тела интенсивного светового излучения, в результате которого может нарушаться механическая цельность этих тел статистическая изучает статистические свойства световых полей и особенности их взаимодействия с веществом тонких слоев изучает прохождение света через прозрачные слои вещества, толщина которых соизмерима с длиной световой волны физическая изучает природу света и световых явлений) как раздел оптики электронная занимается вопросами формирования, фокусировки и отклонения пучков электронов и получения с их помощью изображений под воздействием электрических и магнитных полей корпускулярная изучает законы движения заряженных частиц в электрическом и магнитном полях нейтронная изучае взаимодейс вие медленных нейтронов со средой) как раздел физики]  [c.255]

ЛУЧ — понятие геометрической оптики (световой Л.) и геометрической акустики (звуковой Л.), обозначающее линию, вдоль к-рой распространяется поток энергии волны, испущенной в определ. направлении источником света или звука. В каждой точке Л, ор-тогоналсн волновому фронту. В однородной среде  [c.615]

Из-за отсутствия у нейтронов электрич. заряда они глубоко проникают внутрь большинства материалов, что позволяет рассматривать их как достаточно прозрачные среды для распространения нейтронных волн. Большая часть нейтронно-оптич. явлений имеет аналогию с оптич. явлениями, несмотря на различную природу полей нейтронного и светового излучений. Световые волны описываются ур-ниями Максвелла, а нейтронная волна (нейтронная волновая ф-ция) подчиняется ур-нию Шрёдингера. Распространение волн в среде, согласно Гюйгенса принципу, связано с их рассеянием и доследующей интерференцией вторичных волн. В случае нейтронов рассеяние обусловлено гл. обр. их короткодействующим сильным взаимодействием с атомными ядрами, в случае световых волн — дальнодейст-вующим электромагнитным взаимодействием с электронами атомных оболочек. Наличие у нейтрона магн. момента приводит к взаимодействию с магн. моментами атомов, на чем основано т. н. магнитное рассеяние нейтронов, не имеющее аналогии в оптике. Неупругое рассеяние нейтронов можно сопоставить с комбинационным рассеянием света. В отличие от векторной световой волны, нейтронная волна является спинором. Поэтому все поляризац. явления в Н. о., связанные с наличием у нейтрона спина, существенно отличаются от оптических, хотя и здесь есть аналогии напр., поляризации нейтронов можно (в нек-ром приближении) сопоставить круговую поляризацию света. В Н. о. в нек-рых случаях имеет место двойное лучепреломление и дихроизм (см. ниже).  [c.273]

Физическая О. рассматривает проблемы, связанные с процессами испускания света, природой света и световых явлений. Утверждение, что свет есть поперечные ал.-маги, волны, явилось результатом огромного числа эксперим. исследований дифракции света, интерференции света, поляризации света, распространения света в анизотропных средах (см. Кристаллооптика, Оптическая анизотропия]. Совокупность явлений, в к-рых проявляется волновая природа света, изучается в крупном разделе фиа. О.— волновой оптике. Её матем. основанием служат общие ур-ния класснч. электродинамики — Максвелла уравнения. Свойства среды при этом характеризуются макроскодич. материальными константами — значениями диэлектрической проницаемости 8 и магнитной проницаемости р,, входящими в ур-ния Максвелла в виде коэффициентов. Эти значения однозначно определяют показатель преломления среды л = [Лер.  [c.419]


В волновой оптике Ф. п. представляет собой предельный случай Гюйгенса — Френеля принципа и применим, если можно пренебречь дифракцией света (когда длина световой волны мала по сравнению с наименьшими характерными для задачи размерами) рассматривая лучи как нормали к волновым поверхностям, легко показать, что при всяком распространении света оптич. длины будут иметь экстремальные значения. Во всех случаях, когда необходимо учитывать дифракцию, Ф. п. (как и геом. оптика вообще) неприменим.  [c.282]

Компенсация термооптических искажений методами нелинейной оптики. Компенсация сложных и меняющихся во времени искажений волнового фронта может быть выполнена методами, основанными на эффектах нелинейной оптики, принципиально отличающихся от изложенных выше оптотехнических или связанных с изменением структуры материала. Сразу же заметим, что эти методы, в которых используется наводимое в среде полем световой волны изменение показателя преломления, наиболее эффективны применительно к излучению с значительной плотностью мощности (большей или равной 100 кВт/см2) требования к когерентности излучения также могут быть довольно жесткими. К настоящему времени известно несколько приемов компенсации искажений волнового фронта  [c.139]

При ограниченных размерах нелинейной среды и поперечного сечения светового пучка накачки наиболее интересен случай рассеяния назад,- когда усиливаемые упругая и световая волны распространяются навстречу и каждая из них обеспечивает положительную обратную связь для процесса параметрического усиления другой. Если когерентный падающий пучок пространственно неоднороден, т. е. его интенсивность не постоянна по поперечному сечению, то при ВРМБ происходит интереснейшее явление обращения волнового фронта, не имеющее аналога в классической оптике. Схема эксперимента по его наблюдению приведена на рис. 10.6. Волновой фронт интенсивного лазерного пучка, имеющего высокую направленность, существенно искажается поставленной на его пути фазовой пластинкой Я со случайными неоднородностями. Расходимость пучка возрастает при этом в десятки раз. Затем линза Л с большой апертурой, достаточной для того, чтобы перехватить весь расширенный пучок, направляет свет в кювету К, заполненную сероуглеродом или метаном при высоком давлении. Небольшая часть лазерного пучка отражается плоскопараллельной пластинкой, и его угловое распределение в дальней зоне регистрируется измерительной системой С1. Аналогичная система С2 регистрирует рассеянный назад свет, также прошедший через линзу Л и фазовую матовую пластинку Я.  [c.500]

Влияние нелинейностей среды на геометрические характеристики распространения света оказывается эффективным лишь при относительно высоких интенсивностях при этих интенсивностях свет может, вообще говоря, описываться на классической основе. Поэтому обсуждение может быть построено на методах, описанных в ч. 1, 4.1. Соответствующ ие восприимчивости можно заимствовать из эксперимента или рассчитать квантовомеханически в рамках полуклассической трактовки (см. 2.3). Для интерпретации экспериментальных результатов обсуждаются вклады различных процессов в нелинейную восприимчивость в их зависимости от свойств среды и световых волн [4.-11]. Этими восприимчивостями можно воспользоваться для определения изменения показателя преломления под действием облучающего света. Проблемы распространения света в среде с зависящим от интенсивности показателем преломления исследуются при помощи методов классической оптики в рамках как волновой, так и геометрической оптики [4.-12].  [c.483]

Ф. п. установлен П. Ферма [1] и в первоначальной формулировке имел смысл наиболее общего закона распространения света. Действительно, из Ф. п. вытекают основные законы геометрич. оптики — закон отражения и закон преломления. В волновой теории света Ф. п. представляет собой следствие более общего принципа Гюйгенса и сохраняет силу только в тех случаях, когда длина световой волны может счптаться пренебрежимо малой величиной. Аналогия между Ф. п. и вариационными принципами механики сыграла большую роль в развитии современной динамики, с одной стороны, и теории оптич. инструментов — с другой. Эта же аналогия послужила одпой и отправных точек в открытии квантовой механики.  [c.296]

Короче говоря, необходима физическая оптика, основанная на принципе Гюйгенса, чтобы определить амплитуду световой волны и, следовательно, распределение освещенности в плоскости изображения, зная амплитуду и фазу волнового возмущения в пределах выходного зрачка оптического прибора. Значит ли это, что мы полностью исключаем геометрическую оптику Нет, не значит. Если мы временно пренебрежем воздействием поглощения или покрытия на амплитудное распределение по выходному зрачку, то окажется, что фазовое распределение по зрачку точно определяется оптическим ходом, который набегает в результате прохождения луча от одной поверхности до другой. В принципе такое суммирование оптической разности хода при прохождении луча от одной поверхности до другой может быть осуществлено с любой точностью вплоть до выходного зрачка. Но для того чтобы определить распределение освещенности в изображении точки, на участке от выходного зрачка до плоскости изображения необходимо пользоваться физической оптикой. Тот факт, что схемы прохождения лучей в предыдущей главе часто грубо соответствовали действительности, хотя волновые отклонения достигали нескольких длин волн, проистекает из принципа оптического соответствия, но это обстоятельство не должно отвлекать нас от более фундаментального факта. Мы не должны упускать из виду, что процесс прохождения света на участке между выходным зрачком прибора и плоскостью изображения — это процесс распространения волны. С этой точки зрения оптическую частотную характеристику не следовало бы рассматривать как fait a ompli ), т. е. как нечто такое, что можно измерить лишь после того, как прибор сконструирован, изготовлен и собран. Напротив, это — характеристика, находящаяся под непосредственным контролем конструктора оптических систем, и она полностью определяется формой волнового фронта, выходящего из выходного зрачка прибора.  [c.115]


Смотреть страницы где упоминается термин Волновая оптика (световые волны) : [c.26]    [c.372]    [c.305]    [c.547]    [c.406]    [c.545]    [c.328]    [c.20]    [c.209]    [c.456]   
Смотреть главы в:

Справочное руководство по физике  -> Волновая оптика (световые волны)



ПОИСК



Оптика волновая



© 2025 Mash-xxl.info Реклама на сайте