Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимодействие частиц и излучения с веществом

Прежде чем перейти к изложению сущности, укажем на различие трех выше указанных дифракционных методов. Оно обусловлено различной силой взаимодействия рентгеновского, электронного и нейтронного излучений с веществом. Рентгеновское электромагнитное излучение при прохождении через кристалл взаимодействует с электронными оболочками атомов (возникающие вынужденные колебания ядер вследствие их большой массы имеют пренебрежимо малую амплитуду), и дифракционная картина связана с распределением электронной плотности, которую можно характеризовать некоторой функцией координат р(л. у, z). В электронографии используют электроны таких энергий, что они взаимодействуют, главным образом, не с электронными оболочками атомов, а с электростатическими потенциальными полями ф(х, у, Z), создаваемыми ядрами исследуемого вещества. Взаимодействие между двумя заряженными частицами (электроном и ядром атома) значительно сильнее, чем между электромагнитным излучением и электронной оболочкой атома. Поэтому интенсивность дифракции электронного излучения примерно в 10 раз сильнее, чем рентгеновского. Отсюда понятно, почему получение рентгенограмм часто требует нескольких часов, электронограмм — нескольких секунд.  [c.36]


Нейтральные частицы и у Кванты. Существуют три основных типа взаимодействия у Излучения с веществом  [c.111]

Любой реальный процесс взаимодействия излучения с веществом так же, как и любой эксперимент по рассеянию, носит характер взаимодействия пучка частиц о большим числом атомов мишени. Эго требует статистического подхода при экспериментальном и теоретическом изучении возникающих явлений. Основой такого подхода должны служить вероятность рассеяния первичных частиц на определенный угол и вероятность выбивания ПВА в данном направлении. Однако по традиции, сложившейся в те времена, когда основной задачей являлась задача определения из экспериментов по рассеянию эффективных размеров ядер мишени, вместо вероятности любого события в атомной физике используют прямо пропорциональную ей величину — эффективное поперечное сечение данного события о, которое определяется следующим образом  [c.31]

Формулы (2.42), (2.45) — (2.47) позволяют определять эффективные сечения на основе экспериментальных данных. Кроме того, для изучения процессов рассеяния и взаимодействия излучения с веществом необходимы формулы, позволяющие вычислить эти сечения, исходя из какого-либо представления о законах взаимодействия частиц. В рамках указанных выше допущений при условии центральной симметричности потенциала взаимодействия наиболее простым способом получения таких формул является вычисление сечения рассеяния пучка частиц на неподвижном центре, на основе которого,  [c.32]

ИЗЛУЧЕНИЕ электромагнитное [—процесс испускания электромагнитных волн, а также само переменное электромагнитное поле этих волн Вавилова — Черенкова возникает в веществе под действием гамма-излучения и проявляется Б свечении, связанном с движением свободных электронов видимое способно непосредственно вызывать зрительное ощущение в человеческом глазе при длине волн излучения от 770 до 380 нм вынужденное образуется в результате взаимодействия атомов вещества с полем при условии отдачи энергии атомов полю гамма-излучение — испускание волн возбужденных атомными ядрами при радиоактивных превращениях и ядерных реакциях, а также при распаде частиц, аннигиляции пар частица — античастица и других процессах (при длине волн в вакууме менее 0,1 нм) инфракрасное испускается нагретыми телами при длине волн в вакууме от 1 мм до 770 нм (1 нм=10 м) оптическое (свет) характеризуется длиной волны в вакууме от 10 нм до 1 мм рентгеновское возникает при взаимодействии заряженных частиц и фотонов с атомами вещества и характеризуется длинами волн в вакууме от 10—100 нм до 0,01—1 пм ультрафиолетовое является оптическим с длиной волны в вакууме от 380 до 10 нм] ИНДУКТИВНОСТЬ [характеризует магнитные свойства электрической цепи с помощью коэффициента пропорциональности между силой электрического тока, текущего в контуре, и полным магнитным потоком, пронизывающим этот контур взаимная является характеристикой магнитной связи электрических цепей, определяемой для двух контуров коэффициентом пропорциональности между силой тока в одном контуре и создаваемым этим током магнитным потоком, пронизывающим другой контур] ИНДУКЦИЯ магнитная—силовая характеристика магнитного поля, определяемая векторной величиной, модуль которой равен отношению модуля силы, действующей со стороны магнитного поля на малый элемент проводника с электрическим током, к произведению силы тока на длину проводника, расположенного перпендикулярно вектору магнитной индукции  [c.240]


В курсе рассматриваются общие положения ядерной физики, законы поведения стабильных ядер, явлений радиоактивного распада и взаимодействие излучения с веществом. Эти разделы представляют основной интерес для работников различных специальностей. Автор пытался изложить их так, чтобы студенты разных профилей подготовки могли самостоятельно выбрать нужный материал, опустив то, что имеет для них второстепенное значение. Разделы, посвященные физике элементарных частиц, реакторам и космическим лучам, имеют для студентов нефизической специальности в основном общеобразовательное значение, поэтому этот материал рассмотрен менее подробно и носит больше описательный характер.  [c.4]

Помимо теплопроводности и конвекции, перенос энергии может осуществляться путем излучения и взаимодействия носителей энергии излучения с частицами вещества среды. Такой вид переноса энергии отвечает излучению, или радиации, фотонов, эмиссии электронов, нейтронов и других частиц.  [c.14]

Принято считать, что фотоэффект дает наиболее прямое экспериментальное доказательство квантовой природы излучения. Квантовая гипотеза и в самом деле позволяет непринужденно объяснить все основные экспериментальные закономерности фотоэффекта. Но тем не менее следует отметить, что эти закономерности получают исчерпывающее объяснение и в полуклассической теории взаимодействия излучения с веществом, рассматривающей вещество квантово-механически, а излучение — как классическое электромагнитное поле. Это показал Г. Вентцель в 1927 г. С аналогичным положением вещей мы сталкиваемся и в проблеме равновесного излучения. Спектральное распределение энергии (формулу Планка) можно получить, рассматривая нормальные колебания электромагнитного поля в полости как набор квантовых осцилляторов, т. е. как идеальный газ частиц излучения — фотонов (см. 9.3). Но формулу Планка можно получить и иначе, рассматривая излучение как классическое электромагнитное поле и применяя квантовую гипотезу лишь к находящемуся в равновесии с ним веществу (осцилляторам). Именно так и поступал Планк (см. 9.2). Полуклассическая теория взаимодействия света с веществом, не привлекая понятия фотона, дает количественное объяснение большинству наблюдаемых явлений. Квантований электромагнитного поля принципиально необходимо для правильного описания некоторых явлений, включающих его флуктуации спонтанного излучения, лэмбовского сдвига, аномального магнитного момента электрона.  [c.459]

Рождение и уничтожение фотонов описывается с помощью представленного в гл. 1 формализма, в котором для фотонов применяются операторы числа частиц, рождения и уничтожения. Во многих случаях описание взаимодействия излучения с веществом значительно упрощается, если описывать также и атомные системы с помощью того же формализма, что и для электромагнитного поля, а именно вводить в рассмотрение операторы рождения и уничтожения возбужденных состояний. Как известно, такое описание атомной системы может быть выполнено при помощи формализма вторичного квантования общее представление читатель найдет в [В2.-2].  [c.93]

Соответствующие примеры можно продолжить, если перейти к обратным задачам нелинейной оптики аэрозоля, в которых необходимо учитывать взаимодействие падающего оптического излучения с частицами зондируемой среды. Микроструктура и показатель преломления вещества частиц аэрозольной системы, находящейся в поле мощного оптического излучения, подвергаются временной трансформации, для описания которой требуется введение функциональной зависимости вида г[Е 1) где Е 1)—полная энергия, поглощенная частицей радиуса г за время взаимодействия 1 [6]. По аналогии с фактором взаимодействия ф(/) для данного класса обратных задач можно ввести фактор ф( ). Определение этой функции методом обратной задачи светорассеяния открывает возможность изучения физических процессов взаимодействия мощной оптической волны с реальными аэрозольными системами. Разработка теории подобных обратных задач нелинейной оптики дисперсных сред является еще одной областью приложения тех аналитических методов, которые излагались выше.  [c.273]


Оптический резонатор, который служит для осуществления взаимодействия излучения с рабочим веществом и в котором происходит отбор энергии от ансамбля генерирующих излучение частиц.  [c.120]

Чтобы представить себе роль слабых взаимодействий более наглядно, попробуем вообразить, каким бь[ был мир при отсутствии тех или иных взаимодействий. В мире без сильных взаимодействий не претерпели бы существенных изменений квантовая электродинамика и вся физика лептонов. И комптон-эффект, и распад мюона протекали бы так же, как и в обычном мире. Но вот сильно взаимодействующих частиц либо не стало бы вовсе, либо вместо них появились бы совершенно другие частицы. Поэтому мир в целом был бы совершенно иным во всей доступной нам области масштабов. Если бы исчезли электромагнитные взаимодействия, то атомные ядра и сильно взаимодействующие частицы остались бы, хотя и в исковерканном виде (или, если хотите, в виде, не исковерканном электромагнитными взаимодействиями). Протон и нейтрон стали бы совершенно неотличимыми друг от друга. Точно так же одинаковыми стали бы частицы внутри каждого изотопического мультиплета (например, три пиона). Начиная же с атомных масштабов и выше, мир изменился бы до полной неузнаваемости. Не стало бы ни молекул, ни атомов, ни электромагнитного излучения. Тем самым не стало бы и привычных нам макроскопических веществ.  [c.397]

Согласно электромагнитной теории света, носителями лучистой энергии являются электромагнитные волны, излучаемые телами. Эти волны в изотропной среде или вакууме распространяются прямолинейно со скоростью света, подчиняясь оптическим законам преломления, поглощения и отражения. Колебания электромагнитных волн направлены перпендикулярно к пути луча. При взаимодействии с веществом носители лучистой энергии проявляют себя как фотоны (кванты энергии), обладающие характером движущихся частиц. Данные о длинах волн некоторых видов излучения приведены ниже  [c.181]

Фотоны с энергией ниже 5 эВ не могут взаимодействовать с веществом таким образом, как это описано выше. Значение энергии этих фотонов, как правило, не превышает энергии связи электронов в атомах. Однако фотоны низких энергий могут вызывать атомные или молекулярные возбуждения. При этом происходит полное поглощение энергии фотона атомом или молекулой, которые переходят в возбужденное состояние. Возбужденные атомы или молекулы, возвращаясь в основное состояние, излучают один или более фотонов, которые в свою очередь могут точно таким же путем поглощаться соседними атомами или молекулами. В конечном счете энергия первичного фотона преобразуется в тепловые колебания частиц вещества, поглощающего излучение. Энергия микроволнового излучения недостаточна для ионизации вещества. Воздействуя на биологическую ткань, оно способно только вызывать ее нагрев. Хотя высказывалось много соображений относительно других видов воздействия микроволнового излучения на живую ткань, ни одно из них не получило убедительного экспериментального подтверждения (в том числе и эффекты, связанные с низкими уровнями облучения).  [c.338]

Ситуация, однако, в корне меняется, если рассмотреть воздействие света на отдельный атом при резонансном взаимодействии интенсивного лазерного излучения с веществом, то ссть когда частота света со близка к частоте перехода в атоме сО( . При насышении поглои ения (см. раздел 18.2) сила световоГо давления перестает зависеть от интенсивности света, определяется исключительно скоростью распада возбужденного состояния у и может иметь достаточно заметную величину. Так, атом натрия массой 23 а.е.м. = 3,8 10 кг с у 10 с в лазерном пучке с >- = 6 10" м получает ускорение около 2,5 м/с . Возможно наблюдать прямое действие сфокусированного лазерного пучка на прозрачные микрочастицы. Эффект оптической левитации достигается, например, при воздействии пучка мощностью 250 мВт на сферические полимерные частицы диаметром 5-20 мкм, поскольку ускорение частиц. может превышать ускорение свободного падения, они оказываются как бы подвешенными в световом луче.  [c.297]

КВАНТОВАЯ ЭЛЕКТРОНИКА — область физики, охватывающая исследования методов усиления, генерации и преобразования частоты эл.-магн. колебаний и волн (в широком диапазоне длин волн, включающем радио- и оптич. диапазоны), основанных на вынужденном излучении или нелинейном взаимодействии излучения с веществом. Осн. роль в К. э. играют вынужденное испускание и положит, обратная связь. В обычных условиях вещество способно лии1ь поглощать или спонтанно (самопроизвольно и хаотически) испускать фотоны в соответствии с Больцмана распределением частиц вещества по уровням энергии. Вынужденное испускание при этом не существенно. Оно начинает играть роль лигнь при отклонении ансамбля микрочастиц от распределения Больцмана. Такое отклонение может быть достигнуто воздействием эл.-магн. поля, электронным ударом, неравновесным охлаждением, инжекцией носителей заряда через по-тенц. барьер в полупроводниках и т. п. В результате таких воздействий (накачки) поглощение эл.-магн. волн веществом уменьшается и при выравнивании населённостей на. энергетич. уровнях, подвергающихся действию накачки, интенсивности поглощения и вынужденного испускания сравниваются и взаимно гасятся. При этом эл.-магн. волна, частота к-рой резонансна но отношению к частоте перехода между этими, энергетич. уровнями, распространяется в веществе без поглощения. Такое состояние наз. н а-сыщением перехода.  [c.319]

Основные этапы развития ядерной физики. Ядерная физика изучает структуру атомных ядер, свойства ядернадх сил, законы изменения и превращения ядер при распаде и ядерных реакциях, взаимодействие ядерного излучения с веществом и элементарные частицы. Трудно указать другую область естествознания, столь же быстро развившуюся и получившую столь широкое применение в медицине, биологии, технике и энергетике, как ядерная физика. Многие ее новые открытия немедленно находят практическое приложение.  [c.5]


При прохождении лучевого потока в среде интенсивность его может ослабляться за счет возможного поглощения и рассеяния. Поглощение и рассеяние лучевого потока возникают при взаимодействии электромагнитных волн излучения с частицами вещества среды. Такое взаимоде1 1Ствие излучения осуществляется, например, с различными полярными молекулами в газах, с различными структурными ансамблями в жидкостях и твердых телах, с частицами пыли, дыма и капельками жидкости, взвешенными в газовой среде, например в атмосфере земли, в продуктах сгорания топок котлов и печей и т. п.  [c.441]

Вопрос о взаимодействии излучения с веществом является чрезвычайно важным с точки зрения как теории, так и практики. Это взаимодействие может рассматриваться с самых различных точек зрения. При воздействии на материал излучения могут изменяться электрические свойства материала и в нем могут возникать новые электрические явления мало того, в материале могут происходить весьма глубокие изменения структуры, механической прочности, оптических свойств и т. п. В ряде случаев важна способность материала поглощать радиацию или же, наоборот, способность его пропускать сквозь себя радиацию без заметного ее ослабления. В определенных условиях под действием радиации, электрического поля и других факторов материалы сами способны излучать радиацию. Сказанным далеко не исчерпывается все многообразие лучевых свойств материалов (И, в частности, диэлектриков. В последаие годы в связи с широким развитием ядерной техники, использованием радиоактивных изотопов, ускорителей элементарных частиц все чаще приходится иметь дело с воздействием на материалы различных видов ионизирующих излучений, почему изучению лучевых свойств материалов уделяется все большее внимание.  [c.298]

Флуороскопические экраны изготовляют нанесением на картонн)то основу флуоресцентного вещества (люминофора), которое представляет собой, например, смесь кристаллов сульфида цинка (ZnS) и сульфида кадмия ( dS), активированную серебром. В результате процессов взаимодействия рентгеновского и у-излучений с веществом люминофора возникает люминесценция со свечением в зеленой или желто-зеленой части видимого спектра. Чувствительность контроля оказывается в 3 - 6 раз ниже, чем при радиографии. Эти экраны служат для регистрации электронов, протонов, а-частиц, а также могут быть использованы входными элементами рентгеновских электронно-оптических преобразователей (РЭОП) и во флюорографии.  [c.278]

Т. и. — основной метод получения пучков фотонов высокой энергии, с помощью к-рых изучается электромагнитная структура элементарных частиц и атомных ядер, фоторождение элементарных частиц и др. процессы взаимодействия излучения с веществом. В металлургии Т. и. широко применяется в у-дефекто-сконии.  [c.191]

Сверхнроводящно соленоиды находят применение в лабораториях, занимающихся исследованиями магнитных, электрич. и оптич. свойств вещества, в экспериментах но получению сверхнизких темп-р с помощью адиабатич. размагничивания, в опытах по поляризации атомных ядер, в исследованиях взаимодействия излучения с веществом. Такие соленоиды получают применение в технике связи и радиолокации, в парамагнитных усилителях и генераторах излучения. По мере удешевления производства сверхпроводящей проволоки, когда станет возможным получать магнитные ноля, 100 кэ в больших объемах, сверхпроводящие магниты найдут широкое применение в технике ядерного эксперимента для фокусировки и отклонения пучков ускоренных частиц и, возмоя но, для удержания частиц в ускорителях, а также для изучения свойств илазмы, исследования управляемых термоядерных реакций, ионных двигателей и т. п.  [c.115]

Действие излучения на материалы. При оценке действия радиации на твердое тело констатируется изменение какого-либо свойства или ряда свойств тела, соответствующее определенной степени воздействия излучения, которую характеризуют дозой облучения. Доза — количество энергии, полученное единицей массы вещества в результате облучения. Взаимодействие излучений с твердым телом представляет собой сложное явление, которое в общем случае сводится к следующему возбуждение электронов, возбуждение атомов и молекул, ионизация атомов и молекул, смещение атомов и молекул с образованием парных дефектов Френкеля. Кроме того, в результате воздействия излучений возможны ядерные и химические превращения, а также протекание фотолити-ческих реакций. Все это приводит к уменьшению плотности, изменению размеров, увеличению твердости, повышению предела текучести, уменьшению электросопротивления, изменению оптических характеристик тела. Знание изменений свойств под действием облучений особенно важно при создании ядерно-энергетических установок, ряда устройств космических аппаратов [52]. Покрытия в космическом пространстве испытывают воздействие радиации, состоящей из электромагнитного излучения и потока частиц. Каждое  [c.181]

Другим видом энергетических потерь заряженной частицы М, пролетающей через вещество, являются потери энергии иа тормозное излучение. Особенно велики эти потери для электронов больших энергий. Электрон, [фолетающий через вещество, испытывает сильное взаимодействие со стороны электрического поля атомных ядер вещества и претерневает отклонение. Так как заряд ядра Ze значительно больше заряда электрона, а масса электрона т очень мала по сравнению с массой ядра (Мдд 1836 т), то электрон испытывает резкое торможение в иоле ядра и при этом теряет значительную часть своей энергии, испуская квант (фотон) электромагнитного излучения. Эти потери энергии вследствие излучения называются радиационными потерями или потерями на тормозное излучение. Примером радиацнонного излучения электронов является рентгеновское излучение (имеющее сплошной спектр), возникающее прн бомбардировке антикатода рентгеновской трубки электронами.  [c.28]

В самом конце XIX в. впервые появились факты, которые поставили под сомнение элементарность атомов. В это время были открыты катодные и рентгеновские лучи, а- и р-радиоактив-ность и Y-излучение радиоактивных веществ, причем оказалось, что свойствами испускать катодные и рентгеновские лучи, а также испытывать радиоактивный распад обладают различные атомы. Таким образом, возник вопрос об атоме как о сложной системе, способной разрушаться с образованием новых атомов. Сходство свойств различных атомов позволяло надеяться на то, что устройство всех известных атомов удастся свести к различным сочетаниям и взаимодействиям небольшого числа элементарных частиц. Естественно, что на этот раз речь идет о частицах еще более элементарных, чем атомы.  [c.541]

Для количественной оценки воздействия ядерных излучений на вещество необходимо иметь какие-то единицы степени облучения вещества. Эти единицы называются дозиметрическими. Почти все практически используемые дозиметрические единицы — внесистем ные. Рациональный выбор таких единиц осложнен тем, что механизм взаимодействия частиц с веществом сильно зависит от рода частиц и от их энергии.  [c.647]

Различные виды излучений по-разному вза-. имодеиствуют с веществом в зависимости от свойств частиц, составляющих излучение их заряда, массы и энергии. Поскольку значительная часть излагаемого в настоящей главе материала так или иначе связана с этими фундаментальными взаимодействиями, остановимся подробнее на их рассмотрении.  [c.334]


Заряженные частицы (электроны, протоны, продукты деления и т. д.) взаимодействуют с частицами вещества, главным образом с элек-тронами, окружающими ядра атомов. Если частицы излучения несут достаточно большую энергию, каждое,такое" взаимодействие будет приводить к отрыву электрона от атома и образованию положительно заряженного иона. Для того чтобы это произошло, необходимо, чтобы энергия налетающей частицы превышала энергию связи электрона в атоме. Значение энергии связи электрона меняется в очень широких пределах от нескольких электрон-вольт для валентных электронов до многих тысяч электрон-вольт для электронов k-й оболочки тяжелых элементов. В данной главе прежде всего рассмотрим взаимодействие излучения с живой тканью, которую можно представить как смесь атомов легких элементов (табл. 14.2). Подобный подход может быть применен. и к любому другому типу вещества.  [c.334]

Ионизирующие и электромагнитные излучения. Современные изделия, o oj бенио изделия космической и ядерной техники, подвергаются воздействию ионизирующих излучений, создающих при взаимодействии с веществом заряженные атомы и молекулы — ионы. Гамма-излучение, нейтронное, электронное, протонное излучения, а также альфа-частицы могут вызвать повреждения. Наибольшую опасность представляют поток нейтронов и гамма-излучение, влияние которых усиливается в зависимости от их интенсивности и времени воздействия. Непрерывная проникающая радиация вызывает постепенное необратимое изменение электрических, механических, химических и других свойств материалов. Импульсная радиация, действующая короткое время (10 —10 с), приводит к необратимым изменениям электрофизических свойств изделия, а также из-за большой плотности, создаваемой ионизации, может вызвать и обратимые изменения электрических характеристик изделий и материалов.  [c.17]

АНАЛИЗ [активационный — метод определения химического состава вещества с помощью регистрации излучения радиоактивных изотопов, образующихся при облучении вещества ядерными частицами люминесцентный — химический анализ вещества по характеру его люминесценции рентгенорадиометрический— анализ химического состава, основанный на регистрации рентгеновского излучения, возникающего при взаимодействии излучения радиоизотопного источника с атомами вещества рентгеноснектральный — метод определения химического состава примесей вещества по характеристическому рентгеновскому спектру его атомов рентгеноструктурный— метод исследования структуры вещества, основанный на изучении дифракции рентгеновского излучения в этом веществе спектральный — физический метод качественного и количественного анализа веществ, основанный на изучении их спектров — испускания, поглощения, комбинационного рассеяния света, люминесценции АНТИФЕРРОМАГНЕТИЗМ— магнитоупорядоченное состояние кристаллического вещества с антипараллельной ориентацией спиновых магнитных моментов соседних атомов в кристаллической решетке АЭРОДИНАМИКА—раздел аэромеханики, изучающий законы движения газообразной среды и ее взаимодействие с движущимися в ней твердыми телами АЭРОМЕХАНИКА— раздел механики, изучающий равновесие и движение газообразных сред и механическое воздействие этих сред на погруженные в них твердые тела  [c.225]

ОПТИКА [ асферическая содержит элементы, поверхности которых, не имеют сферической формы просветленная обладает уменьшенными коэффициентами отражения света у отдельных ее элементов путем нанесения на них специальных покрытий) как оптическая система (волновая изучает явления, в которых проявляется волновая природа света волоконная рассматривает передачу света и изображений по световодам и пучкам гибких оптических волокон геометрическая изучает законы распространения света в прозрачных средах на основе представлений о световых лучах интегральная изучает методы создания и объединения оптических и оптоэлектронных элементов, предназначенных для управления световыми потоками квантовая изучает явления, в которых при взаимодействии света и вещества существенны квантовые свойства света и атомов вещества когерентная изучает методы создания узконаправленных когерентных пучков света и управления ими нелинейная изучает распространение мощных световых пучков в оптически нелинейных средах (твердые тела, жидкости, газы) и их взаимодействие с веществом силовая изучает воздействие на твердые тела интенсивного светового излучения, в результате которого может нарушаться механическая цельность этих тел статистическая изучает статистические свойства световых полей и особенности их взаимодействия с веществом тонких слоев изучает прохождение света через прозрачные слои вещества, толщина которых соизмерима с длиной световой волны физическая изучает природу света и световых явлений) как раздел оптики электронная занимается вопросами формирования, фокусировки и отклонения пучков электронов и получения с их помощью изображений под воздействием электрических и магнитных полей корпускулярная изучает законы движения заряженных частиц в электрическом и магнитном полях нейтронная изучае взаимодейс вие медленных нейтронов со средой) как раздел физики]  [c.255]

ФОСФОРЕСЦЕНЦИЯ — люминесценция, продолжающаяся значительное время после прекращения ее возбуждения ФОТО ДЕЛЕНИЕ — деление атомного ядра гамма-квантами ФОТОДИССОЦИАЦИЯ—разложение под действием света сложных молекул на более простые ФОТОИОНИЗАЦИЯ — процесс ионизации атомов и молекул газов под действием электромагнитного излучения ФОТОКАТОД — холодный катод фотоэлектронных приборов, испускающий в вакуум электроны под действием оптического излучения ФОТОЛИЗ— разложение под действием света твердых, жидких и газообразных веществ ФОТОЛЮМИНЕСЦЕНЦИЯ—люминесценция, возникающая под действием света ФОТОМЕТРИЯ— раздел физической оптики, в котором рассматриваются энергетические характеристики оптического излучения в процессах его испускания, распространения и взаимодействия с веществом ФОТОПРОВОДИМОСТЬ изменение электрической проводимости полупроводника под действием света ФОТОРЕЗИСТОР — полупроводниковый фотоэлемент, изменяющий свою электрическую проводимость под действием электромагнитного излучения ФОТОРОЖ-ДБНИЕ — процесс образования частиц на атомных ядрах и нуклонах под действием гамма-квантов высокой энергии ФОТОУПРУГОСТЬ — возникновение оптической анизотропии и связанного с ней двойного лучепреломления в первоначально оптически изотропных телах при их деформации  [c.293]

Впервые квантовые свойства были открыты у эл.- [ магн. поля. После исследования М. Планком (М. Plan k) законов теплового излучения тел (1900) i в пауку вошло представление о световых порциях — i квантах эл.-магн, иоля. Эти кванты — фотоны—во многом похожи на частицы (корпускулы) ни обладают i определёнными энергией и импульсом, взаимодейству- ют с веществом как целое. В то же время давно изве- стны волновые свойства эл.-магн, излучения, к-рые j проявляются, напр,, в явлениях дифракции и интерфе- 1 ренции света. Т. о., можно говорить о двойственной природе, или О корнускулярно-волновом дуализме, фотона.  [c.330]

Во.звткионение физ.-хим. процессов п жидкостях и газах н одноврем. существование разл. фазовых состояний сильно усложняют описание и изучение движения сплошных сред. В ур-ния (1) —(4) добавляются новые члены, учитывающие эти процессы, и в систему включаются 1кнше ур-ния (ур-ния хим. кинетики, ур-ни)1 переноса излучения и др.), что в большинстве случаев требует разработки новых методов решения. Для расчётов по этим ур-ниям необходимо знать скорости соответствующих физ. и хим. процессов и параметры, характеризующие взаимодействие нейтральных и за-ряж. частиц между собой и с обтекаемыми телами. К числу этих параметров относятся, в первую очередь, скорости разл. хим. реакций в сложных но составу смесях молекул и атомов, коэф. излучения и поглощения молекул разл. веществ в разл. областях спектра и в широком диапазоне изменения давлений и темп-р, эффективные сечения столкновения частиц и т. п.  [c.465]

Действие Д. основано на разл. процессах взаимодействия частиц с веществом. Оси. процессами, к-рые вызываются заряж. частица.ми, являются ионизация и возбуждение атомов и молекул, а также (для релятивистских частиц) возбуждение черенковского и переходного излучений. Нейтральные частицы (напр., нейтроны, 7-кваиты) регистрируются по вторичным заряж-частицам, появляющимся в результате их взаимодействия с веществом. В случае -у-кваитов это электроны, возникающие в результате фотоэффекта, комптон-эф-фекта и рождения электрои-позитроииых пар (см. Гамма-излучение). Быстрые нейтроны регистрируются по заряж. продуктам взаимодействия (ядрам, протонам, мезонам и др.), медленные нейтроны — по излучению, сопровождающему их захват ядрами вещества (см. Нейтронные детектора).  [c.588]



Смотреть страницы где упоминается термин Взаимодействие частиц и излучения с веществом : [c.324]    [c.239]    [c.86]    [c.134]    [c.11]    [c.235]    [c.42]    [c.435]    [c.223]    [c.199]    [c.17]    [c.249]    [c.256]    [c.270]    [c.404]   
Смотреть главы в:

Экспериментальная ядерная физика Кн.2  -> Взаимодействие частиц и излучения с веществом



ПОИСК



Взаимодействие излучения с веществом

Взаимодействие частиц при излучении

Излучение и вещество

Частицы взаимодействие



© 2025 Mash-xxl.info Реклама на сайте