Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимодействие ядерных излучений

Нами предлагается использовать для этой цели особенности взаимодействия ядерных излучений с веществом. Рис. 1 иллюстрирует предлагаемый способ. При автоматизированной проходке штрека с исполь--зованием радиоактивного датчика, привязывающего шахтопроходческую машину к контакту порода—уголь, проходка штрека долн<на вестись под заданным углом с обеспечением определенной высоты от почвы выра- ботки до контакта порода—уголь.  [c.151]


ВЗАИМОДЕЙСТВИЕ ЯДЕРНОГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ  [c.130]

Методы обнаружения и измерения ядерных излучений основываются на изменениях, происходящих в результате их взаимодействия с веществом.  [c.71]

Данные по радиоизотопам, применяющимся для построения приборов автоматического контроля, приведены в табл. 27. Важным свойством источников ядерных излучений является отсутствие какого-либо влияния внешних условий (давления, температуры, электрического и магнитного полей и т. д.) на активность и энергию излучения. Причиной этого является то, что радиоактивность обусловлена не процессами в электронных оболочках атома, где энергии взаимодействия имеют тот же порядок, что и энергии обычных физических явлений, а связана с явлениями, происходящими внутри атомного ядра, где энергии взаимодействия на 3—4 порядка выше.  [c.115]

Третий период (с пятидесятых годов) связан с появлением гораздо более эффективного, чем рентгеновские лучи, ядерного излучения (быстрые нейтроны, а-частицы и т. д.), что наряду с применением электронной микроскопии и других совершенных методов лабораторного исследования обеспечило возможность более глубокого и всестороннего изучения строения реальных металлов. В кристаллах металлов удалось изменять расположение атомов, создавать там различные дефекты строения и изучать их взаимодействие, от которого зависят важнейшие свойства реальных металлов.  [c.7]

Важным свойством источников ядерных излучений является отсутствие какого-либо влияния внешних условий (давления,, температуры, электрического и магнитного полей и т. д.) на интенсивность и энергию излучения. Это объясняется тем, что радиоактивность связана с явлениями, происходящими внутри атомного ядра, где энергии взаимодействия на 3—4 порядка выще энергий обычных физических явлений.  [c.188]

В основе исследований взаимодействия проникающих излучений ядерного взрыва с объектом лежит задача определения детальных характеристик полей излучений внутри облучаемого объекта. Особое место в этой проблеме занимает задача определения характеристик эмиссии заряженных частиц с поверхности.  [c.276]

Энергия за вычетом этих слагаемых называется внутренней энергией (U). Она сосредоточена в массе вещества и в электромагнитном излучении, т. е. это сумма энергии излучения, кинетической энергии движения составляющих вещество микрочастиц, потенциальной энергии из взаимодействия и энергии, эквивалентной массе покоя всех этих частиц согласно уравнению Эйнштейна. При термодинамическом анализе ограничиваются каким-либо определенным уровнем энергии и определенными частицами, не затрагивая более глубоко лежащих уровней. Для химических процессов, например, несущественна энергия взаимодействия нуклонов в ядрах атомов химических элементов, поскольку она остается неизменной при химических реакциях. В роли компонентов системы в этом случае могут, как правило, выступать атомы химических элементов. Но при ядерных реакциях компонентами уже должны быть элементарные частицы. Внутренняя энергия таких неизменных в пределах рассматриваемого явления структурных единиц вещества принимается за условный уровень отсчета энергии и входит как константа в термодинамические соотношения.  [c.41]


По поводу первого метода можно сказать, что недавние экспериментальные исследования <) поглощения гамма-излучения веществом показывают для более тяжелых элементов изменения в зависимости от атомного номера, и эти факты свидетельствуют о наличии довольно значительного взаимодействия с ядрами. Все это наводит на мысль, что возбуждение ядер посредством поглощения излучения, может быть, не является редким процессом н что поэтому разработка способа получения мощных искусственных источников гамма-излучения с различными длинами волн могла бы иметь значительную ценность для ядерных исследований В нашей лаборатории, как и в других местах, проводятся такие работы.  [c.147]

Книга состоит из трех частей свойства ядер и радиоактивных излучений (часть первая), ядерные взаимодействия (часть вторая) и ядерные силы и элементарные частицы (часть третья).  [c.12]

Полосатые молекулярные спектры поглощения и излучения возникают при переходах между дискретными уровнями молекул. В точной постановке задача определения энергетических уровней молекулы не имеет решения и для учета взаимного влияния движения электронов и ядер, связи спиновых моментов с орбитальными и т. д. приходится опираться на приближенные методы, использующие характерные особенности внутримолекулярных взаимодействий. Вследствие заметной разницы в массах скорость движения электронов в молекулах велика по сравнению со скоростью движения ядер и стало быть электроны и ядра вносят неодинаковый вклад в полную энергию молекулы. При этом оказалось возможным отделить проблему определения энергии, связанной с движением электронов в поле ядер, от энергии собственно ядерного движения и учесть методами последовательных приближений взаимное влияние электронной (характеризующейся относительно большой частотой переходов) и ядерной (характеризующейся относительно малой частотой переходов) подсистем в молекуле.  [c.849]

Значительно более глубокой и содержательной является мезонная теория ядерных сил (Г. Юкава, 1935). Если феноменологический подход можно сравнивать с открытием закона Кулона, то историческим образом для мезонной теории ядерных сил может служить система уравнений Максвелла, из которой можно получить не только закон взаимодействия двух зарядов, но и излучение радиоволн, интерференцию света, действие электрического тока на магниты. Точно так же к мезонной теории относится не только получение закона взаимодействия двух нуклонов, но и такие вопросы, как рождение пи-мезонов, или, как их теперь чаще называют, пионов при нуклонных столкновениях, а также законы взаимодействия пионов с нуклонами и друг с другом.  [c.201]

Гамма-распад состоит в испускании ядром кванта очень.жесткого (более жесткого, чем рентгеновское) электромагнитного излучения. Вызывающее этот распад электромагнитное взаимодействие всего лишь на четыре порядка слабее ядерных сил. Поэтому и времена жизни по отношению к 7-распаду, как правило, очень малы. Но в результате совместного действия причин в) и г) (см. п. 4) в отдельных  [c.206]

Обнаружение и регистрация излучения. Ионизирующее излучение обнаруживается и регистрируется по результатам его взаимодействия с материалом детектора. Одни детекторы предназначаются для измерения интегральных характеристик поля излучения и обычно используются в качестве дозиметров, другие измеряют поглощение энергии при отдельном акте взаимодействия и могут использоваться как спектрометры. Обнаружение и измерение активности и характеристик поля излучения являются самостоятельными разделами ядерной физики, их подробное изложение не входит в цели настоящей работы.  [c.116]

ИЗЛУЧЕНИЕ электромагнитное [—процесс испускания электромагнитных волн, а также само переменное электромагнитное поле этих волн Вавилова — Черенкова возникает в веществе под действием гамма-излучения и проявляется Б свечении, связанном с движением свободных электронов видимое способно непосредственно вызывать зрительное ощущение в человеческом глазе при длине волн излучения от 770 до 380 нм вынужденное образуется в результате взаимодействия атомов вещества с полем при условии отдачи энергии атомов полю гамма-излучение — испускание волн возбужденных атомными ядрами при радиоактивных превращениях и ядерных реакциях, а также при распаде частиц, аннигиляции пар частица — античастица и других процессах (при длине волн в вакууме менее 0,1 нм) инфракрасное испускается нагретыми телами при длине волн в вакууме от 1 мм до 770 нм (1 нм=10 м) оптическое (свет) характеризуется длиной волны в вакууме от 10 нм до 1 мм рентгеновское возникает при взаимодействии заряженных частиц и фотонов с атомами вещества и характеризуется длинами волн в вакууме от 10—100 нм до 0,01—1 пм ультрафиолетовое является оптическим с длиной волны в вакууме от 380 до 10 нм] ИНДУКТИВНОСТЬ [характеризует магнитные свойства электрической цепи с помощью коэффициента пропорциональности между силой электрического тока, текущего в контуре, и полным магнитным потоком, пронизывающим этот контур взаимная является характеристикой магнитной связи электрических цепей, определяемой для двух контуров коэффициентом пропорциональности между силой тока в одном контуре и создаваемым этим током магнитным потоком, пронизывающим другой контур] ИНДУКЦИЯ магнитная—силовая характеристика магнитного поля, определяемая векторной величиной, модуль которой равен отношению модуля силы, действующей со стороны магнитного поля на малый элемент проводника с электрическим током, к произведению силы тока на длину проводника, расположенного перпендикулярно вектору магнитной индукции  [c.240]


Основные этапы развития ядерной физики. Ядерная физика изучает структуру атомных ядер, свойства ядернадх сил, законы изменения и превращения ядер при распаде и ядерных реакциях, взаимодействие ядерного излучения с веществом и элементарные частицы. Трудно указать другую область естествознания, столь же быстро развившуюся и получившую столь широкое применение в медицине, биологии, технике и энергетике, как ядерная физика. Многие ее новые открытия немедленно находят практическое приложение.  [c.5]

Далее, в результате процессов взаимодействия космических излучений с биологической тканью в теле космонавта будет создаваться неравномерное пространственное распределение поглощенных доз. Степень неравномерности этого распределения зависит от проникающей способности излучения. Для излучения очень больщой проникающей способности (например, для высо-коэнергетичной части спектра галактического космического излучения) локальная поглощенная доза могла бы в принципе служить критерием радиационной опасности, поскольку в этом случае перепады значений доз в различных точках отсека и по поверхности и объему тела космонавта были бы невелики. Однако при увеличении энергии заряженных частиц значительно возрастает вклад в дозу вторичных частиц, образующихся при ядерном взаимодействии в биологической ткани. При этом эффект вторичных излучений существенно зависит от общей массы  [c.272]

Для количественной оценки воздействия ядерных излучений на вещество необходимо иметь какие-то единицы степени облучения вещества. Эти единицы называются дозиметрическими. Почти все практически используемые дозиметрические единицы — внесистем ные. Рациональный выбор таких единиц осложнен тем, что механизм взаимодействия частиц с веществом сильно зависит от рода частиц и от их энергии.  [c.647]

Приборы контроля теплоэнергетических процессов, использующие ядерные излучения, могут быть классифицированы по принципам их действия. Так, приборы могут быть основаны на изменении взаимного расположения источника и приемника излучения на законах взаимодействия у-излучения с веществом на законах взаимодействия р-излу-чения с веществом на законах взаимодействия нейтронов с веществом на явлениях ионизации и возбуледения атомов вещества.  [c.125]

КООРДИНАТНЫЕ ДЕТЕКТОРЫ (позиционно-чувст-вптельные детекторы) — детекторы элементарных частиц, ядерных фрагментов, тяжёлых ионов, снособные с высокой точностью локализовать отдельные точки их траекторий. С помощью К. д. определяют место прохождения, углы вылета, а по отклонению в магн. ноле — импульсы ааряж. частиц, К. д. позволяют реконструировать сложную пространств. картину взаимодействия ядерных частиц в веществе, в т. ч. множественного рождения, каскадного размножения, рассеяния и излучения.  [c.458]

Процессы излучения в ряде случаев играют существенную роль при ядерных столкновениях. Это связано с тем, что для вылета -кванта требуется меньшая концентрация энергии, чем для вылета других частиц квант может унести с собой меньше энергии, чем вылетающая из ядра частица. Поэтому при малых энергиях возбуждения время жизни составного ядра определяется главным образом взаимодействием ядерных частиц с излзгчекием, хотя это взаимодействие и невелико (в силу малости постоянной тонкой структуры е /Ас и малости отношения v/ , где v—скорость ядерных частиц, а с—скорость света). Отсюда следует, что время жизни составного ядра с небольшой энергией возбуждения (которая лишь немного превышает энергию связи нейтрона или протона в ядре) очень велико по сравнению с характерным ядерным временем. Например, время жизни возбуждённых ядер Сг , излучающих , --кванты с энергией 1 MeV, составляет около 0,65Х X10- сек., что примерно в 10 —10 раз превосходит характерное ядерное время.  [c.149]

Чтобы объяснить эту особенность ядерного излучения, необходимо помнить о сильном взаимодействии между ядер-ными частицами. Можно предполагать, что если возбуждение ядра не настолько велико, чтобы существенно повлиять на относительное положение соседних частиц, то излучательные свойства ядра будут подобны излз чательным свойствам однородно заряженного макроскопического тела 1 1.  [c.254]

Для того чтобы уметь регистрировать ядерное излучение и для того чтобы уметь от него защищаться (если это нужио), обходимо знать, за счет каких процессов теряет свою энергию частица, проходя через вещество какова проникающая способность частиц как зависят вероятности различных процессов взаимодействия от параметров частицы (заряда, массы, энергии) и от свойств вещества (заряда ядер, плотности, ионизационного потенциала).  [c.130]

Радиоволновой неразрушающий контроль основан на анализе взаимодействия электромагнитного излучения радиоволнового диапазона с объектами контроля. На практике наибольшее распространение получили сверхвысокочастотные (СВЧ) методы, использующие диапазон длин волн от 1 до 100 мм. Взаимодействие радиоволн может носить характер взаимодействия только падающей волны (процессы поглощения, дифракции, отражения, преломления, относящиеся к классу радиооп-тических процессов) или взаимодействия падающей и отраженной волн (интерференционные процессы, относящиеся к области радиоголографии). Кроме того, в радиодефектоскопии могут использоваться специфические резонансные эффекты взаимодействия радиоволнового излучения (электронный парамагнитный резонанс, ядерный магнитный резонанс и др.). Использование радиоволн перспективно по двум причинам достигается расширение области применения неразрушающего контроля, так как для контроля диэлектрических, полупроводниковых, ферритовых и композитных материалов радиоволновые методы наиболее эффективны во вторых появляется возможность использования радиоволн СВЧ диапазона.  [c.420]


Для разработки материалов, обеспечивающих работоспособность реакторных конструкций, чехлов ТВС, оболочек твэлов, в США, Франции, Великобритании, Германии, России были приняты и реализуются национальные программы, в ходе которых радиационные испытания материалов выполняются при их облучении в исследовательских, материаловед-ческих, энергетических ядерных реакторах с использованием ускорителей, генераторов частиц высокой энергии. Результаты испытаний, исследований структуры и свойств материалов в "горячих" камерах позволяют обосновать выбор материалов, разработать модели, объясняющие физико-химические, ядерные процессы, сопровождающие взаимодействие реакторных излучений с атомно-кристалличес-кой структурой сталей и приводящие к изменению их свойств.  [c.314]

Процесс деления ядер и взаимодействие нейтронов взрыва с некоторыми материалами приводит к наработке гамма-излучения, сопровождающего взрыв боеприпаса. Этот вид ПФЯВ характеризуется распределением потока энергии гамма-квантов в зависимости от расстояния до центра взрыва, а также параметрами длительности. При взаимодействии гамма-излучения взрыва с атмосферой возникает ток комптоновских электронов, который может приводить к формированию электромагнитного импульса ядерного взрыва.  [c.130]

В условиях ядерного взрыва электронные системы могут подвергаться действию комплекса радиационных и электромагнитных факторов. Радиационные факторы представляют собой набор мгновенных и длиннопериодных составляющих нейтронного, гамма- и рентгеновского излучения различного происхождения. Электромагнитные факторы включат в себя составляющие ЭМИ ядерного взрыва (радиальное и поперечное поле) и вторичные электромагнитные эффекты, генерируемые при взаимодействии ионизирующих излучений с объектом. Эти составляющие вместе с радиационным сторонним током и радиационно-наведенной проводимостью внешней и внутренней среды определяют электромагнитное действие излучений ядерного взрыва на электронные системы. Пабор и характеристики воздействующих факторов зависят от условий взрыва, расстояния от него и свойств конструкции объекта и системы.  [c.277]

ВЗАИМОДЕЙСТВИЕ ЯДЕРНЫХ ПИНОВ С ПОЛЕМ ИЗЛУЧЕНИЯ  [c.247]

Легко показать, что некогерентное взаимодействие ядерных спинов с полем излучения в тепловом равновесии представляет собой один из механизмов тепловой релаксации ядер, хотя и чрезвычайно слабый. Для спина, взаимодействуюш,его с таким полем, вероятность потери энергии при переходе из верхнего состояния а) в нижнее состояние Ъ) путем испускания фотона больше вероятности обратного перехода в отношении  [c.248]

Действие излучения на материалы. При оценке действия радиации на твердое тело констатируется изменение какого-либо свойства или ряда свойств тела, соответствующее определенной степени воздействия излучения, которую характеризуют дозой облучения. Доза — количество энергии, полученное единицей массы вещества в результате облучения. Взаимодействие излучений с твердым телом представляет собой сложное явление, которое в общем случае сводится к следующему возбуждение электронов, возбуждение атомов и молекул, ионизация атомов и молекул, смещение атомов и молекул с образованием парных дефектов Френкеля. Кроме того, в результате воздействия излучений возможны ядерные и химические превращения, а также протекание фотолити-ческих реакций. Все это приводит к уменьшению плотности, изменению размеров, увеличению твердости, повышению предела текучести, уменьшению электросопротивления, изменению оптических характеристик тела. Знание изменений свойств под действием облучений особенно важно при создании ядерно-энергетических установок, ряда устройств космических аппаратов [52]. Покрытия в космическом пространстве испытывают воздействие радиации, состоящей из электромагнитного излучения и потока частиц. Каждое  [c.181]

Электромагнитное взаимодействие в (100 - - 1000) раз слабее ядерного и происходит за время т сек. Переносчиками электромагнитного взаимодействия являются кванты электромагнитного излучения ( -лучи, рентгеновские лучи, фотоны). Примеры электромагнитных процессов ионизационное торможение, кулоиовское рассеяние, фотоэффект.  [c.254]

Мезонные теории ядерных сил строятся по аналогии с квантовой электродинамикой. Как известно, в квантовой электродинамике электромагнитное поле рассматривается совместно со связанными с ним частицами — фотонами. Оно как бы состоит из фотонов, которые являются его квантами. Энергия поля равна сумме энергии квантов. Фотоны возникают (исчезают) при испускании (поглощении) электромагнитного излучения (например,. света). Источником фотонов является электрический заряд. Взаимодействие двух зарядов сводится к испусканик> фотона одним зарядом и поглощению его другим. При такой постановке вопроса становится возможным рассмотрение новых, явлений, относящихся к классу взаимодействий излучающих систем с собственным полем излучения. Этим путем удается,, например, объяснить аномальный магнитный момент электрона и мюона (см. 10, п. 3 И, п. 6), лэмбовский сдвиг уровней в тонкой структуре атома водорода и ряд других тонких эффектов.  [c.9]

Так, для получения пучка уизлучения высокой энергии электронный пучок направляют на тугоплавкую мишень, из которой вылетает мощный, но, к сожалению, сильнейшим образом размытый по энергии пучок у-квантов. Большинство электронных ускорителей в настоящее время используется именно как источники у-излучения, а не электронов. Получающиеся на электронных ускорителях пучки тормозного Y-излучения хорошо коллимированы и имеют интенсивность, достаточную для проведения исследования различных фото-ядерных, фотомезонных и других фотореакций. Серьезным недостатком пучка тормозного излучения является неудачная форма его энергетического спектра. Спектр размазан по всей допустимой области энергий от энергии электронов тах до нуля. При этом наибольшая часть фотонов приходится на область низких энергий, так как везде, за исключением краев, кривая энергетического распределения фотонов ведет себя как (рис. 9.4). Эта размазанность тормозного спектра сильно осложняет экспериментальные исследования взаимодействий у-квантов с ядрами и элементарными частицами.  [c.480]

Ионизирующие и электромагнитные излучения. Современные изделия, o oj бенио изделия космической и ядерной техники, подвергаются воздействию ионизирующих излучений, создающих при взаимодействии с веществом заряженные атомы и молекулы — ионы. Гамма-излучение, нейтронное, электронное, протонное излучения, а также альфа-частицы могут вызвать повреждения. Наибольшую опасность представляют поток нейтронов и гамма-излучение, влияние которых усиливается в зависимости от их интенсивности и времени воздействия. Непрерывная проникающая радиация вызывает постепенное необратимое изменение электрических, механических, химических и других свойств материалов. Импульсная радиация, действующая короткое время (10 —10 с), приводит к необратимым изменениям электрофизических свойств изделия, а также из-за большой плотности, создаваемой ионизации, может вызвать и обратимые изменения электрических характеристик изделий и материалов.  [c.17]


Бергер и Стэк [2] наблюдали влияние электрического поля на теплообмен при вынужденной конвекции. Б этих исследованиях весь теплообменный аппарат был помещен в ядерный реактор. Газ ионизировался радиоактивным излучением. Было доказано, что обнаруженное увеличение теплоотдачи вызывалось взаимодействием между электрическим полем и ионизированным газом. Если прикладывалось постоянное электрическое поле, теплоотдача возрастала довольно значительно (на 20%). Наибольшее увеличение теплоотдачи наблюдалось, когда реактор был полностью активирован. Как можно было ожидать на основании аналогии Рейнольдса, увеличение теплоотдачи сопровождалось пропорциональным увеличением потерь давления.  [c.429]

АНАЛИЗ [активационный — метод определения химического состава вещества с помощью регистрации излучения радиоактивных изотопов, образующихся при облучении вещества ядерными частицами люминесцентный — химический анализ вещества по характеру его люминесценции рентгенорадиометрический— анализ химического состава, основанный на регистрации рентгеновского излучения, возникающего при взаимодействии излучения радиоизотопного источника с атомами вещества рентгеноснектральный — метод определения химического состава примесей вещества по характеристическому рентгеновскому спектру его атомов рентгеноструктурный— метод исследования структуры вещества, основанный на изучении дифракции рентгеновского излучения в этом веществе спектральный — физический метод качественного и количественного анализа веществ, основанный на изучении их спектров — испускания, поглощения, комбинационного рассеяния света, люминесценции АНТИФЕРРОМАГНЕТИЗМ— магнитоупорядоченное состояние кристаллического вещества с антипараллельной ориентацией спиновых магнитных моментов соседних атомов в кристаллической решетке АЭРОДИНАМИКА—раздел аэромеханики, изучающий законы движения газообразной среды и ее взаимодействие с движущимися в ней твердыми телами АЭРОМЕХАНИКА— раздел механики, изучающий равновесие и движение газообразных сред и механическое воздействие этих сред на погруженные в них твердые тела  [c.225]

МЕТАЛЛОФИЗИКА — раздел физики, в котором изучаются структура и свойства металлов МЕТОД [аналогии состоит в изучении какого-либо процесса путем замены его процессом, описываемым таким же дифференциальным уравнением, как и изучаемый процесс векторных диаграмм служит для сложения нескольких гармонических колебаний путем представления их посредством векторов встречных пучков используется для увеличения доли энергии, используемой ускоренными частицами для различных ядерных реакций Дебая — Шеррера применяется при исследовании структуры монохроматических рентгеновских излучений затемненного поля служит для наблюдения частиц, когда направление наблюдения перпендикулярно к направлению освещения Лагранжа в гидродинамике состоит в том, что движение жидкости задается путем указания зависимости от времени координат всех ее частиц ин1 ерференционного контраста служит для получения изображений микроскопических объектов путем интерференции световых воли, прошедших и не прошедших через объект меченых атомов состоит в замене атомов исследуемого вещества, участвующего в каком-либо процессе, их радиоактивными изотопами моделирования — метод исследования сложных объектов, явлений или процессов на их моделях или на реальных установках с применением методов подобия теории при постановке и обработке эксперимента статистический служит для изучения свойств макроскопических систем на основе анализа, с помощью математической статистики, закономерностей теплового движения огромного числа микрочастиц, образующих эти системы совнадений в ядерной физике состоит в выделении определенной группы одновременно происходящих событий термодинамический служит для изучения свойств системы взаимодействующих тел путем анализа условий и количественных соотношений происходящих в системе превращений энергии Эйлера в гидродинамике заключаегся в задании поля скоростей жидкости для кинематического описания г чения жидкости]  [c.248]


Смотреть страницы где упоминается термин Взаимодействие ядерных излучений : [c.324]    [c.205]    [c.74]    [c.111]    [c.275]    [c.37]    [c.13]    [c.272]    [c.28]    [c.152]    [c.410]   
Физика. Справочные материалы (1991) -- [ c.0 ]



ПОИСК



Взаимодействие излучения с системой ядерных спинов в статическом магнитном поле. Модель для магнитного ядерного резонанса

Взаимодействие ядерных излучений с веществом

Тепловая релаксация в жидкостях и газах Взаимодействие ядерных спинов с полем излучения

Ядерные излучения



© 2025 Mash-xxl.info Реклама на сайте