Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Действие Принцип Гамильтона

Важнейшими интегральными принципами классической механики являются принцип Гамильтона — Остроградского и принцип стационарного действия Мопертюи — Лагранжа, рассматриваемые в этой главе курса.  [c.390]

В TOM случае, если система находится только под действием консервативных сил и при этом концы временного интеграла ti и 4 не варьируются, т. е. 8ti = 8t2 = 0, уравнение принципа Гамильтона — Остроградского принимает вид  [c.397]


Установленное выше утверждение о том, что прямой путь доставляет действию по Гамильтону стационарное значение, называется вариационным принципом (или началом) Гамильтона. Принцип Гамильтона замечателен тем, что он выделяет прямой путь среди всех окольных путей, которые могут быть проведены между двумя точками расширенного координатного пространства, устанавливает общее свойство прямого пути, его отличие от иных кинематически возможных, но не реализующихся в рассматриваемом потенциальном поле путей ).  [c.279]

Вернемся теперь к принципу Гамильтона и выясним, какого типа стационарная точка — максимум, минимум или точка перегиба — достигается действием на прямом пути. Ответ на этот вопрос тесно связан с указанными в начале этого параграфа особенностями краевой задачи, которая возникает при проведении прямого пути.  [c.283]

Принцип Гамильтона — Остроградского утверждает, что вариация действия по Гамильтону  [c.215]

Принцип Гамильтона—Остроградского дает только необходимое условие стационарности, действия по Гамильтону на прямом пути. Для решения вопроса о характере экстремума следует определить знак второй вариации 6 5, Значите действия по Гамильтону на прямом пути по сравнению с окольными будет минимальным, если 6 S>0. Если промежуток времени ti—U выбрать достаточно малым, то условие б 5>0 будет выполнено н действие по Гамильтону на прямом пути будет минимальным по сравнению с окольными путями ),  [c.220]

Согласно принципу Гамильтона при движении точки но прямому пути между начальным и конечным положениями точки действие но Гамильтону имеет стационарное значение но сравнению с окольными путями при условии, что сравниваемые движения происходят за один и тот же промежуток времени — U- Следовательно, для действительного движения  [c.223]

Принцип Гамильтона справедлив только для консервативных систем, то есть для систем, находящихся под действием потенциальных или обобщенно потенциальных сил. Неконсервативные механические системы подчиняются принципу Остроградского.  [c.615]

Согласно принципу Гамильтона, этот закон есть экстремаль функционала действия. Поэтому функция действия по Гамильтону вычисляется следующим образом  [c.643]

Равенство (65.42 ) составляет содержание принципа Гамильтона — Остроградского действительное движение системы между ее двумя заданными положениями отличается от кинематически возможных движений, совершаемых за тот же промежуток времени, тем, что для действительного движения вариация действия по Гамильтону (S) равна нулю.  [c.99]


Принцип Гамильтона состоит в следующем функции и (), , удовлетворяющие уравнениям Лагранжа, т. е. выражающие истинное движение системы под действием данных сил, удовлетворяют в то же время необходимым условиям того, чтобы действие по Гамильтону могло принять экстремальное значение (максимум или минимум) сравнительно со значениями во всех других возможных близких  [c.375]

Принцип Гамильтона состоит в следующем функции и У1, удовлетворяющие уравнениям Лагранжа (выражающие истинное движение системы под действием данных сил), удовлетворяют в то же время необходимым условиям экстремальности действия по Гамильтону, т. е. действие по Гамильтону имеет максимум или минимум сравнительно со значениями во всех других возможных близких движениях системы, переводящих ее из начального положения (при <= о) в конечное (t = tl).  [c.405]

Принцип Гамильтона — Остроградского формулируется так действительное движение системы с голономными связями отличается от иных кинематически возможных движений тем, что для него вариация действия согласно Гамильтону—Остроградскому, определенного для произвольного промежутка времени, равна нулю.  [c.197]

Поэтому раньше принцип Гамильтона — Остроградского называли принципом наименьшего действия.  [c.197]

Если, наоборот, точка Мз лежит между точками Л41 и М2— действие вообще не принимает на действительной траектории экстремального значения. Аналогичные заключения можно сделать и относительно принципа Гамильтона— Остроградского ).  [c.205]

При доказательствах интегральных принципов вводятся частные предположения о свойствах сил, действующих на точки системы, и свойствах связей. Но и здесь были получены из принципов М. В. Остроградского уравнения движения систем с голо-номными связями в форме уравнений Лагранжа второго рода, а из принципа Гамильтона — Остроградского — система канонических уравнений движения.  [c.210]

Рассмотрим классическое определение производящей функции канонических преобразований, устанавливающее связь этой функции с механическим действием, соответствующим принципу Гамильтона — Остроградского. Механическое действие согласно Гамильтону — Остроградскому  [c.368]

В этом случае строгое решение задачи, основанное на волновой теории, практически не отличается от решения, найденного методом геометрической (лучевой) оптики. Установив, как зависит показатель преломления от свойств среды, т. е. от силовых полей, в которых движется электрон, мы можем рассчитать его движение по правилам геометрической оптики. С другой стороны, можно рассчитать движение электрона по обычным законам механики, зная силы, действующие на электрон. На возможность рассмотрения механической задачи с оптической точки зрения указывалось уже давно. Более 100 лет назад Гамильтон (около 1830 г.) показал, что уравнениям механики можно придать вид, вполне аналогичный уравнениям геометрической оптики. Первые можно представить в виде соотношения, выражающего принцип наименьшего действия (принцип Мопертюи, из которого можно получить уравнения ньютоновой механики), а вторые — в виде соотношения, выражающего принцип наименьшего оптического пути (принцип Ферма, из которого следуют законы геометрической оптики, см. 69). Оба эти принципа имеют вполне тождественное выражение, если подходящим образом ввести понятие показателя преломления. Блестящим результатом современной теории является то обстоятельство, что устанавливаемый ею показатель преломления связан с параметрами, характеризующими силовые поля, в которых движется частица, именно так, как требуется для отождествления принципа  [c.358]

Принцип Гамильтона. Чтобы полнее выяснить свойства полного интеграла уравнения в частных производных Гамильтона — Якоби, следует рассмотреть функцию действия. Сначала выведем известный принцип Гамильтона из принципа Эйлера — Лагранжа (п. 8). Имеем  [c.315]


О различных формах принципа наименьшего действия. На этом вопросе для ясности необходимо остановиться. Принцип Гамильтона имеет вид  [c.317]

КАНОНИЧЕСКИЕ УРАВНЕНИЯ. ТЕОРЕМЫ ЯКОБИ И ПУАССОНА. ПРИНЦИПЫ ГАМИЛЬТОНА, НАИМЕНЬШЕГО ДЕЙСТВИЯ И НАИМЕНЬШЕГО ПРИНУЖДЕНИЯ  [c.364]

IV. Принцип Гамильтона. Принцип наименьшего действия  [c.386]

Формулировка принципа. — Принцип наименьшего действия, впервые точно сформулированный Якоби, аналогичен принципу Гамильтона, но менее общ и более труден для доказательства. Этот принцип применим только к тому случаю, когда связи и силовая функция не зависят от времени и когда, следовательно, существует интеграл живой силы.  [c.225]

Принцип Гамильтона и принцип наименьшего действия приводят, как мы знаем 1), составление уравнений движения динамической задачи при некоторых условиях к отысканию минимума определенного интеграла. Однако это приведение к минимуму в общем случае не имеет места.  [c.316]

Замечание. — Условие минимума, входящее в формулировку принципа наименьшего принуждения, осуществляется без каких-либо ограничений, так как речь идет о минимуме положительной квадратичной формы, что не вызывает дальнейшего исследования. Этого нельзя сказать о принципе Гамильтона и принципе наименьшего действия.  [c.319]

Даламбера принцип 37 Движение стационарное 286 Действие по Гамильтону 103  [c.298]

Принцип наименьшего действия. Другим вариационным принципом, подобным принципу Гамильтона, является принцип наименьшего действия. Если стремиться к наиболее общему определению, то под действием в механике следует понимать интеграл  [c.253]

Мы уже говорили, что вариационные принципы не вносят в механику нового физического содержания и редко упрощают практическое решение той или иной механической задачи. Их главное достоинство состоит в том, что они служат отправными точками новых теоретических концепций в классической механике. В этом отношении особенно плодотворен принцип Гамильтона, а также принцип наименьшего действия, хотя и не в такой степени. Что касается других принципов, то они имеют заметно  [c.260]

Принцип Гамильтона, так же как и остальные принципы наименьшего действия, кажущимся образом противоречит нашему представлению о причинности, поскольку, согласно этому принципу, протекание процесса во времени определяется не состоянием системы в настоящий момент, а выводится с учетом в равной мере прошедшего и будущего системы. Интегральные принципы являются, казалось бы, не каузальными, а телеологическими. К этому вопросу мы вернемся в 37, когда будем рассматривать историческое происхождение принципов наименьшего действия. Там же мы коснемся вопроса о распространении принципа Гамильтона на другие области физики.  [c.247]

Особое преимущество принципа Гамильтона обнаруживается в механике сплошных сред, поскольку этот принцип приводит не только к дифференциальным уравнениям задачи, но также и к краевым условиям, которым должны удовлетворять решения этих дифференциальных уравнений в частных производных. Во многих случаях необходимо вначале искать функцию Лагранжа L (входящую в выражение вариационного принципа) в зависимости от характера задачи. Это имеет место, например, при движении электрона в магнитном поле, когда действующая сила не имеет потенциала У далее — в теории относительности, когда L нельзя выразить с помощью выведенного нами выражения (4.10) для кинетической энергии. Здесь роль кинетической части принципа наименьшего действия играет выражение  [c.277]

Интеграл от лагранжиана по времени, входящий в соотпошспие (35), называют интегралом действия. Принцип Гамильтона для консервативных систем может быть сформулирован таким образом истинное движение системы под действием консервативных сил происходит так, что на любых изохронных вариациях, обращающихся в нуль на концах отрезка (t , ti), вариация от интеграла действия обращается в нуль (или, иначе, интеграл действия принимает для истинного движения стационарное значение).  [c.38]

Действие. Принцип Гамильтона. Уравнения Лагранжа были получены ранее из уравнений Ньютона для системы связанных материальных точек с помощью принципа виртуальных перемещений и принципа Даламбера — Лагранжа. Однако уравнения Лагранжа можно получить из общего теоретического принципа, носящего название вариационного принципа экстремального (иногда стационарного) действия. (Он же называется принципом Остроград-ского — Гамильтона.) Принцип экстремального действия распространяется не только на механические, но и на квантово-механические системы, поля, поэтому он имеет важнейшее теоретическое значение.  [c.207]

Условие (4Г) выражаег так называемый принцип Гамильтона. Принцип Гамил1, гопа утверждает, что для действительного движения системы из одною но. южения в другое действие по Гамильтону имеет экстремум по сравнению с другими возможными движениями системы при фиксированных значениях /, на границах, т. е. при (, и /j.  [c.411]

Эта формула устанавливает зависимость между действием по Лагранжу W и действием по Гамильтону S Сопоставим теперь принцип Мопертюи— Лагранжа с принципом Гаммльтона — Остроградского. В принципе Мопертюи — Лагранжа сравниваются движения консервативной системы, oeepuiaejWM с одной и той же энергией, тогда как в принципе Гамильтона —Остроградского сравниваются движения, совершаемые за один и тот же промежуток времени.  [c.411]


Но выполнение необходимого условия существования экстремума не обеспечивает существование экстремума и, кроме того, минимума. Поэтому наименование принципа Гамильтона — Остроградского принципом наименьшего действия необоснованно. Не будем останавливаться здесь на рассмотрении необходи-  [c.197]

На основании равенства (II. 141) можно сказать, что на отрезке траектории действительного движения М М2 действие согласно Гамильтону — Остроградскому стационарно. Пoэтoмv принцип Гамильтона — Остроградского называется гакуке принципом стационарного действия.  [c.198]

Это равенство выражает принцип Гамильтона—Остро-градского для г о л о н о м н о й системы в случае существования II о т е Г) н и а л а си л среди всех сравниваемых) путей прямой путь выделяется тем. что для него действие по Гамильтону имеет стационарное значенае (т. в. первая вариация bS па прямом пути равна, нулю).  [c.334]

Вопрос об экстреиальпых свойствах действия но Лагранжу решается точно так же, как и для принципа Гамильтона — Остроградского при помощи рассмотрения сопряженных кинетических фокусов.  [c.342]

Принцип наим1еньшего действия. Этот принцип, менее общий чем принцип Гамильтона, применим к движению системы, связи которой не зависят от времени и на которую действуют силы, имеющие силовую функцию и. Принцип наименьшего действия выражает геометрическое свойство системы, не зависящее от понятия времени.  [c.388]

Формулировка принципа. Ученые искали различные способы сведения уравнений движения к единому началу путем введения интегралов или функций, которые обращаются в минимум для действительного движения системы по сравнению с возможными 6an3KitMH движениями. Эта идея находит свое выражение прежде всего в принципе наименьшего действия (п. 486) затем следует более общий принцип Гамильтона (п. 483), из которого очень просто выводятся уравнения Лагранжа для голономных систем, но в случае систем не-голономных эти рассуждения и выводы становятся уже неверными. Мы займемся здесь принципом наименьшего принуждения Гаусса. Этот принцип, являясь наиболее общим, не вызывает к тому же никаких затруднений при его приложениях. Преимущество принципа состоит и в том, что он имеет простое аналитическое выражение, позволяющее свести нахождение уравнений движения произвольной системы, как голономной, так и неголономной, к нахождению минимума функции второй степени.  [c.420]

Вначале мы остановимся на принципе наименьшего действия Гамильтона а рассмотрение исторически более раннего принципа Мопер-тюи отложим до 37. Принцип Гамильтона отличается от принципа Мо-пертюи тем, что в нем не должно варьироваться время. Это значит, что система проходит одновременно как через точку действительной траектории (с координатами ж/.), так и через соответствующую ей точку траектории, получаемой в результате варьирования (пусть координаты этой точки будут Xk + Sxk)- Таким образом, для принципа Гамильтона  [c.243]

Что следует здесь понимать под словом действие Очевидно, не то же самое, что понимается под этим словом в принципе Гамильтона, поскольку речь теперь идет о формулировке, хотя и близкой к гамиль-тоновской, но все же отличной от нее.  [c.272]


Смотреть страницы где упоминается термин Действие Принцип Гамильтона : [c.626]    [c.460]    [c.52]    [c.278]    [c.304]   
Смотреть главы в:

Курс теоретической физики Классическая механика Основы специальной теории относительности Релятивистская механика  -> Действие Принцип Гамильтона



ПОИСК



519 — Принцип действия

Асинхронное варьирование действия вспомогательной склерономной систе. 15.3. Расширенный принцип Гамильтона-ОстроградскоОбобщение интегрального принципа Гёльдера

Гамильтон

Действие гамильтоново

Действие по Гамильтону

Зэк гамильтоново

Канонические уравнения. Теоремы Якоби и Пуассона. Принципы Гамильтона, наименьшего действия и наименьшего принуждения

Ковариантность. 2. Калибровочная инвариантность Структура кинетической энергии. 4. Невырожденность Принцип наименьшего действия по Гамильтону. 6. Движение по геодезическим Понятие первого интеграла

Лагранжиан, функционал действия. Принцип Гамильтона-Остроградского (или принцип наименьшего действия) Первые интегралы. Теорема Нетер. Движение системы во внешнем поле. Лагранжиан заряженной частицы в заданном электромагнитном поле. Вектор-потенциал магнитного поля соленоида Движение относительно неинерциальных систем отсчета

Принцип Гамильтона

Принцип Гамильтона. Принцип наименьшего действия

Принцип варьированного действи Гамильтона

Принцип наименьшего действия Гамильтон

Принцип наименьшего действия Гамильтона—Остроградского

Принцип наименьшего действия в форме Гамильтона — Остроградского

Принцип стационарного действия в форме Гамильтона

Принцип стационарности действия Гамильтон

Распространение принципа Гамильтона и принципа наименьшего действии на неголономные системы



© 2025 Mash-xxl.info Реклама на сайте