Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип варьированного действи Гамильтона

Случай голономной системы со связями, не зависящими от ВРЕМЕНИ и с консервативными силами, в предположении консервативных сил принцип стационарного действия допускает следующую специальную формулировку, аналогичную той, которая была указана без доказательства в п. 10 для принципа Гамильтона для голономной системы со связями, не зависящими от времени, соответствующее действие для какого-нибудь естественного движения между двумя достаточно близкими конфигурациями будет не только стационарным, но и минимальным по сравнению с тем, которое имелось бы для всякого асинхронно-варьированного изоэнергетического движения. Здесь мы также, чтобы не слишком задерживаться, откажемся от доказательства этого утверждения ),  [c.411]


Подобно принципу Гамильтона ( 3.7), принцип наименьшего действия выражает необходимые и достаточные условия движения. Поэтому из пего можно вывести уравнения движения. Однако это сделать значительно трудней, чем из принципа Гамильтона, вследствие ограничения Е = h, накладываемого на движения вдоль варьированных путей. В этом случае мы имеем вариационную задачу Лагранжа. Мы приведем здесь этот вывод для натуральной системы. Согласно принципу наименьшего действия функционал h  [c.546]

Подобные общие принципы, в которых выставляется требование, чтобы интеграл некоторой функции состояния, распространенный на время, в течение которого происходит изменение состояния, имел экстремальное значение, иногда обязательно минимальное, выдвигались неоднократно. Эти принципы имели различную форму, соответствующую тем или другим условиям, налагаемым на варьирование, но при правильном выполнении требуемых варьирований все эти принципы приводят к одним и тем же дифференциальным уравнениям для рассматриваемых процессов. Первым из этих интегральных принципов был предложенный Мопертюи принцип наименьшего действия, в котором утверждалось, что при всех происходящих в природе явлениях среднее значение живой силы имеет минимальное значение. Условия варьирования, имеющие при этом место для механических задач, найдены только Лагранжей, и тем самым этот принцип был только им научно обоснован. Эти условия с современной точки зрения могут быть выражены требованием, чтобы полная энергия варьированного движения оставалась равной полной энергии действительного движения. Впрочем, к тем же результатам приводит принцип Гамильтона, при котором имеет место другое условие, а именно, что время не затрагивается варьированием. Это последнее условие имеет то преимущество, что мы имеем возможность присоединить к Я добавочные члены, относящиеся к внешним силам. Поэтому мы оставляем форму Гамильтона, которая теперь при сохранении прежнего условия варьирования гласит  [c.465]

О чем в обоих принципах идет речь, я сейчас, по крайней мере, упомяну, рассмотрев еще раз движение шара. Шар при своем действительном движении, являющемся чистым качением, занимает непрерывную последовательность положений. Применение названных принципов требует небольшого изменения движения. Чтобы осуществить последнее, мы прежде всего сдвинем немного каждое из пройденных шаром положений так, что возникнет вторая непрерывная последовательность положений в то же время положения этой новой последовательности находятся в соответствии с положениями первой последовательности. Этим второе движение полностью еще не определено, ибо не указано, что в обоих движениях соответствующие положения проходятся одновременно в принципе Гамильтона это требуется, тогда как принцип наименьшего действия устанавливает нечто другое. Но оба принципа следует здесь применять, считая, что упомянутые малые смещения щара получаются путем одного качения, в то время как Герц в противоречии с этим применил условие, что и второе, т. е. варьированное, движение само является качением без скольжения. Если правильно выполнить вариации, то получается качение шара, которое Герц охарактеризовал  [c.540]


Рассматриваемые в принципе наименьшего действия варьированные состояния физически невозможны. Однако это, конечно, не все возможные состояния, а только какая-либо группа их, удовлетворяющая некоторым условиям. Так, например, в интеграле Гамильтона таким условием является требование одного и того же значения времени для перехода из начального в конечное состояние. Если же вводить какое-либо условие, отличающее принимаемые во внимание варьированные состояния от не принимаемых, то возникает очевидное затруднение все такие состояния нельзя выразить при помощи математических форм, достаточных для описания других невозможных состояний ).  [c.870]

Эта формула представляет собой, с учетом сформулированных условий варьирования, новый вариационный принцип, выведенный Гамильтоном для консервативных голономных систем. Гамильтон обычно называл и этот принцип принципом наименьшего действия.  [c.213]

Лагранж в Аналитической механике рассматривает именно эту узкую форму принципа наименьшего действия. Однако указание на более широкую форму принципа содержится в его ранней работе где в 13 прямо указывается на то, что полученное Лагранжем в 8 этой статьи соотношение, тождественное с уравнением для изоэнергетической вариации, применимо в случае произвольных сил. Большинство ученых, разрабатывавших этот вопрос после Лагранжа, взяли у него как раз узкую форму принципа (в том числе Гамильтон и Якоби). Лишь Гельмгольц рассмотрел расширенную форму принципа. Однако Гельмгольц не счел нужным проводить отчетливое различие между принципом наименьшего действия в расширенной форме и принципом Гамильтона. Он основывался при этом на том безусловно верном положении, что оба эти принципа эквивалентны уравнению Даламбера и в силу этого являются следствиями друг друга. Тем не менее это не дает права отождествлять их, так как варьирование, применяемое в каждом из этих принципов, производится совершенно различными способами. Оба эти принципа получаются из соотношений при различных специализациях общего способа варьирования.  [c.221]

При совместном использовании синхронных и асинхронных вариаций получен расширенный аналог (обобщение) центрального уравнения Лагранжа. На основе этого уравнения составлено интегральное равенство (называемое здесь центральным интегральным равенством), связывающее действие по Лагранжу и действие по Гамильтону. Полученное интегральное равенство позволяет находить синхронные и асинхронные вариации действия при различных вариантах задания условий варьирования концевых точек траектории. Из центрального интегрального равенства как частные случаи следуют классические принципы стационарного действия и другие интегральные выражения изменения действия при варьировании.  [c.106]

Об изменении действия по Гамильтону и действия по Лагранжу при синхронном и асинхронном варьировании. Левая часть интегрального равенства (8) представляет собой выражение, которое равно нулю при предположениях принципа Гамильтона-Остроградского. Действительно, если кривые сравнения получаются изохронным виртуальным варьированием (А = 0) и при условиях на концах  [c.108]

Стремление к унификации формул аналитической механики приводит к идее рассматривать реономные системы как склерономные с п + 1 обобщённой координатой, включив в это число время. Здесь изучается вспомогательная склерономная система, построенная на основе функционала действие по Якоби. Обсуждается обоснование расширенного принципа Гамильтона-Остроградского вспомогательной системы с применением асинхронного варьирования. Получены уравнения движения и условия трансверсальности.  [c.111]

Теорема 21.3 (Принцип Гамильтона). Путь q t) является прямым в том и только в том случае, если при любом варьировании удовлетворяющем (21.8), для вариации действия но Гамильтону на этом нути выполняется  [c.92]

Результат варьирования д(1,а) прямого нути отобразится в пространство новых переменных Действие по Гамильтону Ш а) есть вычисление одного и того же интеграла в разных переменных, поэтому в новых переменных функция (а) останется прежней. По-прежнему а = О есть стационарная точка W(a), поэтому в силу принципа Гамильтона образ д ) прямого пути q t) есть решение уравнений Лагранжа, а функция Лагранжа Ь совпадает с функцией, стояш,ей под интегралом в новых переменных. Подсчет этой функции приводит к результату  [c.94]

Вначале мы остановимся на принципе наименьшего действия Гамильтона а рассмотрение исторически более раннего принципа Мопер-тюи отложим до 37. Принцип Гамильтона отличается от принципа Мо-пертюи тем, что в нем не должно варьироваться время. Это значит, что система проходит одновременно как через точку действительной траектории (с координатами ж/.), так и через соответствующую ей точку траектории, получаемой в результате варьирования (пусть координаты этой точки будут Xk + Sxk)- Таким образом, для принципа Гамильтона  [c.243]

Говоря в этой статье о принципе наименьшего действия, я хотел бы, чтобы под этим понимали не только первоначальную форму этого принципа, принадлежащую П. де Мопертюи ), которая, между прочим, лишь много позже (это сделал Лагранж) получила точное определение условий варьирования и полное докаэательство. Я хочу под этим названием, как самым старым и наиболее известным, понимать также различные преобразованные формы этого предложения, которые были развиты из принципа Мопертюи У. Гамильтоном ) Последний составил два дифференциальных  [c.430]


Таким образом, Слудский и Талызин показали, что принцип наименьшего действия Лагранжа и пр11нцип Гамильтона — Остроградского существенно различны. В последнем принципе точке действительной траектории соответствует точка на варьированной траектории, причем обе точки проходятся в один и тот же момент времени, т. е.  [c.219]

Показано, что интегральное равенство обобщённого принципа Гёльдера справедливо также для кривых сравнения, полученных варьированием по Гельмгольцу. Принцип Гамильтона-Остроградского и принцип стационарного действия Лагранжа выводятся как частные случаи. Предложено новое обобщение принципа Гёльдера [17.  [c.118]

Принцип Гамильтона, рассматриваемый как вариационный принцип стационарного действия, справедлив только для голономных систем. Невозможность непосредственного распространения интегральных принципов, установленных для голономных систем, на неголоном-ные системы была отмечена ещё Герцем [27]. Он обратил внимание на то, что не всякие две точки конфигурационного пространства могут быть соединены траекторией системы с неинтегрируемой дифференциальной связью. Первым, кто предложил интегральный принцип, пригодный для неголономных систем, по-видимому, был Гёльдер его принцип имеет форму интегрального равенства, не являющегося условием стационарности функционала он был получен при предположении перестановочности операций d w 5 (см. заметку 16). При этом, во-первых, варьированные траектории не удовлетворяют уравнениям неголономных связей, и во-вторых, уравнения движения неголономной системы не совпадают с уравнениями Эйлера вариационной задачи Лагранжа. Обсуждению этих двух вопросов посвящена обширная литература с начала двадцатого века и до настоящего времени. Приведём некоторые результаты [101.  [c.142]

Случай консервативных сил. Принцип Гамильтона приобретает особенно простую и наглядную форму, когда силы, действующие на материальную систему, имеют потенциал U. При этом предположении, как уже было отмечено в п. 7, виртуальная работа L не отличается от вариации (полного дифференциала) ьЦ, которую испытывает потенциал при переходе от естественного движения к синхронно-варьиро-ванному движению. Поэтому, принимая во внимание свойство переместительности операций варьирования и дифференцирования (S и djdt), а следовательно, также и операций варьирования и интегрирования по времени, мы будем тождественно иметь  [c.402]

Выберем далее в качестве меры механического движения функционал 8н, называемый действием по Гамильтону. Выведем вариационный принцип Гамильтона из уравнения гинерреактивного движения материальной точки переменной массы и установим экстремальные свойства действия 8н для реально происходящих движений. Будем при этом пользоваться известными понятиями и конструкциями вариационного анализа при синхронном варьировании траекторий [413].  [c.178]

Составляются интегральные равенства, представляющие собой выражения изменения действия при варьировании. В качестве действия рассматриваются классические действия по Гамильтону, по Лагранжу и вириальная форма действия для систем Четаева-Румянцева. Обобщения интегральных равенств получены при рассмотрении истинной траектории и варьированных кривых при совместном применении синхронного и асинхронного варьирования. Даётся обоснование расширенного принципа Гамильтона-Остроградского в теории реономных систем. На основе способа варьирования по Гельмгольцу сформулированы новые обобщения принципа Гёльдера.  [c.106]


Смотреть страницы где упоминается термин Принцип варьированного действи Гамильтона : [c.540]    [c.541]    [c.548]    [c.550]    [c.838]    [c.222]    [c.14]    [c.453]   
Курс теоретической механики Том 2 Часть 2 (1951) -- [ c.399 ]



ПОИСК



519 — Принцип действия

Гамильтон

Действие Принцип Гамильтона

Действие гамильтоново

Действие по Гамильтону

Зэк гамильтоново

Принцип Гамильтона

Принцип варьированного действи



© 2025 Mash-xxl.info Реклама на сайте