Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение перигея и узла

Окончательные значения вековых движений перигея и узла лунной орбиты (не зависящих от прецессии) равны по Брауну [47]  [c.480]

Окончательный гамильтониан дает непосредственно движения перигея и узлов. Эти движения представляют особенный интерес и имеют важное значение из-за того, что они могут быть сравнены с наблюдениями более точно, чем коэффициенты периодических членов. Точность, с которой та или иная теория движения Луны дает теоретические значения для движений перигея и узла, является поэтому важным критерием пригодности всей этой теории в целом.  [c.473]


Слабое воздействие на орбиту Луны оказывают также другие планеты. Кроме того, в возмущения вносят вклад фигуры Земли и Луиы. В табл. 9.2, взятой из теории Брауна, приведены компоненты, из которых складывается вековое движение перигея и узла орбиты. Таблица дает наглядное представление об относительных порядках возмущающих воздействий со стороны Солнца, планет, фигур Луны и Земли и т. д.  [c.282]

Движение перигея и узла  [c.343]

В аргументах членов, содержащих <р и y), учитываются вековые части движения перигея и узла. Следовательно, р, -се и а могут рассматриваться как приближения к г, о и 5 в возмущенном движении. Положим  [c.348]

Наибольшие релятивистские поправки к движению спутника в ньютоновском гравитационном поле сводятся к поправкам к вековым изменениям перигея и узла орбиты. В соответствии с общей теорией относительности релятивистские эффекты в средних движениях элементов 2 и со  [c.331]

Заметим, что п и п" являются соответственно средним движением перигея и средним движением узла орбиты спутника.  [c.333]

Постоянные с и определяют вековые движения перигея и восходящего узла, так как  [c.466]

Уточненные по сравнению с (4.10.52) значения вековых движений перигея и восходящего узла лунной орбиты в основной  [c.482]

Релятивистские эффекты. Наибольшие поправки к ньютоновскому движению спутника сводятся к поправкам к вековым изменениям перигея и узла орбиты. Эти поправки даются формулами  [c.630]

Угол V отсчитывается от направления из центра притяжения на перигей орбиты это направление не является неподвижным в пространстве, а составляет переменный угол соя с некоторым фиксированным направлением. В силу центральности возмущения в уравнения оскулирующих элементов не входит уравнение для определения угла 1 наклона орбиты к экватору и долготы Д восходящего узла орбиты, так как угол / остается постоянным ( = 0), а движение узла суммируется с движением перигея орбиты в общий эффект вращения орбиты в ее плоскости, описываемый уравнением (П 2.12).  [c.405]

На рис. 49 ш=Л . Название угла, конечно, изменяется в зависимости от задачи. Так, в теории движения Луны угол ш называется угловым расстоянием перигея от узла и т. п.  [c.444]

Осевое вращение Луны с равномерной угловой скоростью и неравномерное, согласно закону площадей, движение Луны по геоцентрической орбите определяют для земного наблюдателя кажущиеся колебания Луны в восточно-западном направлении. Это явление называется оптической геометрической) либрацией Луны по долготе. Вследствие наклона экватора Луны к лунной орбите возникают кажущиеся колебания Луны в северно-южном направлении эти колебания называются оптической геометрической) либрацией Луны по широте. Оптическая либрация по широте равна селенографической широте земного наблюдателя, отсчитываемой от среднего экватора Луны ее геоцентрическое значение равно Ь, топоцентрическое значение — Ь. Если оптическая либрация по долготе есть I (геоцентрическое значение, отличное от топоцентрического Г), то селенографическая долгота земного наблюдателя равна I. Геоцентрическая оптическая либрация по широте Ь обращается в нуль, когда Луна проходит через узлы орбиты поэтому период этой либрации равен драконическому месяцу в 27 ,21222, амплитуда 6° 40. Геоцентрическая либрация по долготе I обращается в нуль, когда Луна находится в окрестности перигея и апогея (в сизигиях) ее средний период равен аномалистическому месяцу в 27 ,55455 и амплитуда колеблется от 4°,8 до 8°,1 вследствие изменений элементов орбиты Луны.  [c.204]


Значения п — 0)1 и п — соз равны средним многолетним вековым движениям перигея Яг и восходящего узла Qi лунной орбиты.  [c.457]

Пусть сила сопротивления Р дается формулой (6.5.02), а плотность воздуха зависит от высоты по экспоненциальному закону (6.5.01). Обозначим через Ап, Аа, Ае, АМ, АО и Асо соответственно возмущения среднего движения, большой полуоси, эксцентриситета, средней аномалии, долготы узла и углового расстояния перигея от узла. Тогда возмущения этих элементов от сопротивления воздуха будут определяться формулами [74]  [c.613]

Как и в случае движения перигея, полученный результат представляет собой главную часть движения узла. В ходе систематического построения теории Луны получаются дополнительные члены, имеющие множителями е, е ,  [c.321]

Знак выбирается такой же, как у г,. После того как становятся известными элементы предварительной орбиты, можно использовать теорию искусственного спутника Земли для вычисления вековых возмущений среднего движения, прямого восхождения узла и аргумента перигея, обеспечивая тем самым эфемериды спутника затем накопление последующих наблюдений позволит улучшить орбиту. Когда оказываются доступными данные о дальности и скорости изменения дальности спутника, классические методы определения орбит можно модифицировать так, чтобы воспользоваться этими дополнительными данными. Например, в только что рассмотренном случае данные о дальности дадут нам значения р,, что существенно упростит расчет.  [c.432]

Уравнение (8.3.4) является уравнением траекторий следа вектора кинетического момента на единичной сфере, имеющей центром центр масс спутника. Формула (8.3.4) учитывает одновременное влияние на траекторию аэродинамических моментов, гравитационных моментов и вековой уход (регрессию) узла орбиты. За время, равное периоду прецессионно-нутационного движения вектора кинетического момента, формула (8.3.4) достаточно точно описывает траекторию движения. На большем интервале времени движение постепенно искажается за счет влияния векового ухода (регрессии) перигея орбиты. Но это влияние можно учесть при помощи той же формулы (8.3.4), считая сол медленно меняющимся параметром. Такое рассмотрение является применением метода оскулирующих элементов к уравнению траекторий. При этом, согласно (8.3.3), в левую часть формулы (8.3.4) следует еще добавить член os р.  [c.261]

Положение плоскости орбиты относительно абсолютной системы координат определяется двумя углами fi и , где - долгота восходящего узла орбиты, а - наклонение орбиты. Положение центра масс ИСЗ на орбите характеризуется аргументом широты u(t), отсчитываемым в плоскости орбиты от точки восходящего узла в направлении движения. Обычно вместо / t) рассматривается величина i (t), называемая истинной аномалией u(t) отсчитывается в плоскости орбиты в направлении движения от точки перигея. Очевидно, что аргумент широты и истинная аномалия связаны соотношением  [c.193]

Таким образом, если через AQ и Асо обозначить поправки к средним движениям узла и перигея спутника, обус-  [c.220]

Видно, что изменения угловых величин малы, причем они верны для ИСЗ с различными значениями Ох и при различных начальных условиях движения. Таким образом, учет вращения атмосферы чрезвычайно мало сказывается на вековых уходах долготы восходящего узла, наклонения и аргумента перигея.  [c.377]

Однако имеется одно осложнение мы имеем не только три неизвестные функции, которыми являются наши координаты ж, у, г, а имеем еще две неизвестные постоянные, ис, от которых зависят движения узла и перигея.  [c.520]

В некоторых методах, применяемых в теории движения Луны, особенно в методе, использованном Делонэ, требуется разложение возмущающей функции по эллиптическим элементам орбит Луны и Солнца. В качестве первого шага к получению такого разложения необходимо рассмотреть os 5. Пусть SI есть долгота восходящего узла орбиты Луны, У— наклонность орбиты Луны к эклиптике, d —угловое расстояние лунного перигея от восходящего узла, / — истинная аномалия. Пусть, далее, ш, / означают соответствующие углы для Солнца. Наконец, положим истинные долготы Луны и Солнца равными соответственно  [c.270]


Примерно через 9 лет и 5 суток система вновь приходит в состояние, при котором выполняются условия зеркальности. На этот раз во время новолуния Солнце находится вблизи (6°) перигея, а Луна в апогее, причем широта Луны равна нулю. Векторы скорости Солнца и Луны почти перпендикулярны радиусам-векторам. Если бы такая конфигурация была в точности зеркальной, то орбита Луны была бы строго периодической и в конце сароса система возвращалась бы в исходную зеркальную конфигурацию. При этом влияние возмущений, действующих во время первой половины сароса, полностью компенсировалось бы возмущениями, действующими во время второй половины. Единственным результатом действия возмущения от Солнца была бы регрессия сидерического положения линии узлов орбиты Луны приблизительно на 1 Г. В действительности орбита Луны с учетом возмущений от Солнца очень близка к периодической с периодом в один сарос. Хорошая повторяемость геометрических конфигураций лунных и солнечных затмений свидетельствует о том, насколько близко движение системы Земля—Луна—Солнце к точному периодическому движению. Все остальные возмущения (от планет, приливные, обусловленные фигурами Земли и Луны) имеют очень малую величину.  [c.286]

Точное значение средних движений перигея и узла зависит от дополнительных членов в постоянной части обга их уравнений движения Луны.  [c.189]

Лунная теория Брауна. Важная характерная особенность метода Хилла, предопределяющая возможность дальнейшего совершенствования и уточнения решеппя основной задачи, заключается в том, что, как только получены главные части движения перигея и узла, можно определить из системы линейных уравнений коэффициенты членов любого порядка относительно е, е, у и а/а в любой комбинации, если найдены члены более низкого порядка. На каждом этапе все степени параметра m включаются в численные значения этих коэффициентов, тогда как е, е, y /et остаются в алгебраическом виде. Для этой цели можно использовать уравненпя (49) или эквивалентные им уравнения (48). Для получения членов более нпзких порядков выгодны уравнения (50). Это требует разложения хм/г и xs/r по степеням Su и fis, если и = Uq + ou, s = So + fis-  [c.322]

Появление такого рода вековых и смешанных вековых членов не вызвано каким-либо особым свойством, присущим уравнениям движения, а представляет собой следствие принятого метода интегрирования. В теории движенпя спутника значения движений перигея и узла вводятся с самого начала процесса интегрирования и исправляются при последовательных приближениях. При таком способе вычислений мы не допускаем появления времени в коэффициентах периодических членов. В теории движения планет положение является гораздо более сложным. Кроме того, те выражения, которые понадобились бы для представления решения в форме, напоминающей решение основной задачи в теории движения Луны, оказались бы очень громоздкими из-за медленной сходимости разложения в ряд возмущающей функции по степеням отношений больших осей.  [c.436]

Движение точки в поле тяготения земного сфероида. Названная задача является основной в теории движения близкого искусственного спутника Земли. Следует, конечно, еще учитывать существенное влияние атмосферы Земли на движение спутника, и этому учету посвящен ряд работ. Не останавливаясь здесь на этом вопросе, рассмотрим движение спутника в поле тяготения Земли, пренебрегая всеми остальными факторами. Отличие поля тяготения Земли от поля тяготения ньютоновского центра вызывает возмущения в траектории спутника и отличие ее от кеплеровского эллипса. Существует хорошо разработанный в небесной механике аппарат теории возмущенийтак называемые уравнения в оскулирующих элементах. Использование этого аппарата позволяет весьма просто установить, что основными возмущениями в рассматриваемом случае будут поступательные движения узла орбиты и перигея орбиты. Однако эта задача оказалась занимательной и совсем с другой точки зрения. Обнаружилось, что эта задача в известном смысле эквивалентна старой классической задаче о движении точки в поле тяготения двух неподвижных притягивающих центров. Эта последняя задача, как известно, интегрируется в квадратурах она рассматривалась многими авторами, но не нашла конкретного применения в небесной механике. Появление искусственных спутников стимулировало бурный прогресс в исследованиях и привело, между прочим, и к открытию упомянутой эквивалентности. Таким образом, старая задача получила новое и очень важное конкретное приложение к теории движения искусственных спутников Земли. Первая публикация [1], устанавливающая эквивалентность двух задач, принадлежит молодым советским ученым Е. П. Аксенову, Е. А. Гребенникову, В. Г. Демину, (1961 г.). (В книге Брауэра и Клеменса [2], изданной в 1961 г., также содержится краткое упоминание о такой эквивалентности). Рассмотрим вопрос несколько подробней.  [c.38]

Таким образом, уравнение (11) имеет такой же вид, что и уравнение (1) из главы XXVI, и все, о чем мы говорили в предыдущей главе, здесь применимо. Можно, в частности, воспользоваться определителем Хилла для вычисления движения перигея. Единственное различие заключается в том, что здесь 0j значительно больше, и из этого вытекают две вещи прежде всего сходимость разложения менее быстра, чем в случае движения узла, и это объясняет те обстоятельства, которые так удивили математиков XVIII века далее, некоторые неравенства имеют значительные коэффициенты. Кроме членов с Ъд ъ с , которые представляют главные члены в уравнении центра, такими же будут члены с Ь-i и i, которые дают большое неравенство, известное под названием эвекции.  [c.515]

Разложение возмущающего ускорения в плоскостк движения. Из таблицы 182 следует, что ортогональная составляющая не производит возмущений в большой оси, долготе перигея и эксцентриситете, кроме косвенного, когда она сдвигает линию узлов, от которой считается долгота перигея. Следовательно, понятие о том, каким образом возмущаются эти элементы, можно получить даже предполагая, что наклонность равна нулю. Но надо помнить, что результаты, полученные при этих ограничениях, нр строги, потому что Г и N зависят от наклонности. Но приближение полностью оправдывается, потому что оно дает большие упрощения, которые помогают разобраться в этом вопросе.  [c.304]


Первая обработка проблемы трех тел, а также двух тел дана Ньютоном в Началах , книга I, отдел XI, и, как сказал Эри (Airy), она является наболее ценной главой из написанного когда-либо по физическим наукам . Она содержит R известной степени полное объяснение вариаций, параллактического неравенства, годичного уравнения, движения перигея, возмущений эксцентриситета, обращения узлов и возмущений наклонности. Значение движения лунного перигея, найденное Ньютоном из теории, было в 2 раза меньше данного наблюдениями. В 1872 г. в некоторых из неопубликованных рукописей Ньютона, известных под названием Портсмутского собрания , было найдено, что Ньютон объяснил движение перигея, вклю ив возмущения второго порядка (см. 193). Эта работа была неизвестна астрономам, движение лунного перигея не было выведено из теории до 1749 г., когла КлЕРО ( liiriaut) нашел истинное объяснение, в то время как он собирался  [c.317]

Влияние прецессии и нутации было рассмотрено в работах И. Козаи [1] и К. Ламбека [2]. Наиболее полные результаты получены в прекрасной работе И. Козаи и X. Кино-шиты [3]. Авторами были выведены формулы, дающие возмущения элементов орбиты спутника с весьма высокой точностью. Они подтвердили тот вывод, что в практике исследования движения искусственных спутников наиболее удобной системой координат является координатная система, предложенная Г. Вайсом и К. Муром. Наклон орбиты и аргумент перигея в этой системе отсчитываются от экватора даты (момента наблюдения), а долгота узла измеряется от точки весеннего равноденствия эпохи (скажем, 1950.0) вдоль фиксированного экватора до линии  [c.309]

На движение искусственного спутника оказывает влияние не только сила сопротивления атмосферы, но и сила ее притяжения. Потенциал притяжения атмосферы подобно потенциалу притяжения Земли можно представить рядом по сферическим функциям. Поэтому задача о возмущениях элементов орбиты от притяжения атмосферы сводится к определению коэффициентов этого ряда. Если бы атмосфера была стационарной, то эти коэффициенты были бы постоянными и тогда их можно рассматривать как некоторые добавки к соответствующим коэффициентам геопотенциала. И все было бы просто. Однако плотность атмосферы зависит от времени. Поэтому зависят от времени и коэффициенты потенциала притяжения атмосферы. Сезонные изменения этих коэффициентов были исследованы В. Г. и Е. Б. Шкодровыми [11]. Ими изучены также соответствующие возмущения долготы узла и аргумента перигея орбиты спутника.  [c.311]

Основные возмущения ИСЗ, вызванные несферичностью Земли, -прецессия орбиты и появляющееся вращение большой оси эллиптической орбиты в плоскости этой орбиты. Прецессией называется явление поворота плоскости орбиты вокруг земной оси в направлении, противоположном движению спутника, при этом наклон плоскости орбиты к экватору сохраняется постоянным. Вращение большой оси орбиты приводит к смещению точек апогея и перигея, т.е. к изменению углового расстояния перигея от восходящего узла. Однако, несферич-ность Земли вызывает и другие возмущения.  [c.113]

В теории движения планет в качестве первого приближения, когда отбрасываются возмущающие силы, принимается эллиптическая орбита. В теории Луны Понтекулана первым приближением является модифицированная эллиптическая орбита , посредством которой учитывается равномерное движение узла и перигея. Основным приближением в теории Хилла является частное решение уравнений движения, получаемое в предположении, что эксцентриситетом Солнца, его параллаксом и координатой г можно пренебречь, т. е. что 2 = = г = 0. Кривая линия, соответствующая этому частному решению, называется промежуточной орбитой. Как мы увидим дальше, это частное решение содержит только две произвольные постоянные. Промежуточная орбита является, конечно, только приближением к орбите Луны. Важное преимущество этой орбиты вытекает из следующих двух положений 1) она с самого начала учитывает основную часть солнечных возмущений и 2) координаты Луны в промежуточном движении могут быть легко выражены сходящимися периодическими рядами, коэффициенты которых связаны сравнительно простыми рекуррентными соотношениями. Эти коэффициенты являются функциями т. численное значение которого известно с очень высокой степенью точности, и поэтому их можно вычислить со всей необходимой точностью.  [c.384]

В теории эллиптического движения положение фокальной оси в плоскости орбиты определяется угловым расстоянием ш перигея от восходящего узла. Линия узлов ОК и фокальная ось ОП оскулирующего эллипса расположены в плоскости развертки их положение в этой плоскости определяется углами Д и 8, которые они образуют с осью 05  [c.98]


Смотреть страницы где упоминается термин Движение перигея и узла : [c.343]    [c.469]    [c.102]    [c.207]    [c.216]    [c.591]    [c.511]    [c.191]    [c.532]   
Смотреть главы в:

Небесная механика  -> Движение перигея и узла



ПОИСК



Движение узла

Перигей



© 2025 Mash-xxl.info Реклама на сайте