Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Типы систем программного управления станками

ТИПЫ СИСТЕМ ПРОГРАММНОГО УПРАВЛЕНИЯ СТАНКАМИ  [c.327]

Рассмотренные примеры моделирования показывают особенности моделирования контурных приводов и систем программного управления станками с учетом сил резания. Примеры решения уравнений динамики приводов главного и вспомогательного движения и систем числового программного управления других типов станков изложены в работе (67].  [c.111]


СИСТЕМЫ ЧИСЛОВОГО ПРОГРАММНОГО УПРАВЛЕНИЯ (СЧПУ). Системы ЧПУ подробно описаны в гл. 9. К ним в основном относятся системы, в которых ЭВМ непосредственно управляет станком с помощью программы, состоящей из последовательных технологических шагов. По существу, СЧПУ являются определенным типом систем программного управления. Системы прямого цифрового управления, хотя непосредственно и не являются СЧПУ, включают в себя аналогичную управляющую программу.  [c.439]

Большое количество типов станков и разнообразие функций, выполняемых ими, требуют создания большого количества систем управления, что в свою очередь затрудняет проектирование и массовое производство таких систем. В этих условиях наиболее целесообразно создать агрегатную систему программного управления (АСПУ), где каждая конкретная система к определенной группе станков строилась бы из отдельных унифицированных устройств (агрегатов), входящих в общую агрегатную систему.  [c.5]

Основное преимущество станков с программным управлением состоит в сокращении времени обработки, простоте переналадки и возможности использования в цехах, где наблюдается быстрая смена объектов производства. Металлорежущие станки оснащают цикловым (ЦПУ) и числовым (ЧПУ) программным управлением. Станки с ЦПУ имеют позиционную систему управления с панелями упоров, отключающих движение подачи суппорта или ползуна. Такую систему используют, например, для обработки заготовок типа ступенчатых валов. Программа задается расстановкой специальных стержней-штекеров в гнездах панели, расположенной на отдельном пульте системы ПУ, что дает возможность запрограммировать несколько различных этапов обработки.  [c.337]

От указанных недостатков свободна прямоугольная система координат региональных движений манипулятора. Прямоугольная система допускает применение наиболее простых одно-, двух- и трехкоординатных компоновок механизмов региональных движений и позволяет оснащать любую из этих компоновок необходимыми механизмами локальных перемещений сварочного инструмента, Прямоугольная система координат позволяет применить системы управления любой сложности от простейших однокоординатных путевых систем, используемых в силовых узлах агрегатных металлорежущих станков, до систем программного управления контурного типа. К числу недостатков прямоугольной системы следует отнести большую металлоемкость и значительную занимаемую площадь цеха. Однако данные проведенного кинематического анализа позволяют сделать предположение, что для дуговой сварки большинства изделий компоновка манипулятора в прямоугольной системе предпочтительнее и перспективнее.  [c.171]


В Основных направлениях экономического и социального развития СССР на 1986—1990 годы и на период до 2000 года предусмотрено обеспечить опережающий выпуск металлорежущих станков с числовым программным управлением, станков типа обрабатывающий центр , роторных, роторно-конвейерных и других автоматических линий увеличить производство автоматизированных и роботизированных комплексов и линий, гибких производственных систем.  [c.4]

Класс позиционных и прямоугольных систем включает в себя системы типа И , предназначенные для автоматизации измерений положения рабочих органов станка и индикации результатов этих измерений на световом табло, и системы типа П , предназначенные для программного управления позиционированием и обработкой при перемещении вдоль одной из координат станка.  [c.7]

Создание станков с программным управлением позволило успешно решить задачу автоматизации кинематической перенастройки технологических систем, т. е. осуществить перемещения отдельных органов станков в новое положение в зависимости от номинальных размеров новой обрабатываемой детали. Однако анализ различных типов станков с программным управлением показал, что в результате такой кинематической перенастройки в большинстве случаев правильность размерной настройки не обеспечивается, требуется вмешательство наладчика, задачей которого является установка требуемого относительного положения баз станка, несущих обрабатываемую деталь, инструмента и программоносителя. Следует подчеркнуть, что чаще всего именно трудоемкость размерной настройки составляет несравненно большую долю в общем балансе времени, необходимом на настройку технологической системы.  [c.317]

Как показали проведенные международные выставки металлорежущих станков в Ганновере (1967 г.), Москве (1968 г.), Париже (1969 г.) основными тенденциями в развитии станков с ПУ являются 1) создание станков типа обрабатывающий центр , оснащенных инструментальными магазина.ми и устройствами для автоматической смены инструмента, позволяющими выполнять комплекс сверлильно-фрезерно-расточных работ по заданной программе 2) оснащение как тяжелых фрезерных, так и высокоточных координатно-расточных станков системами числового программного управления 3) применение адаптивных систем в станках с программным управлением 4) широкое использование возможностей ПУ для применения в станках активного контроля с подналадкой инструмента (коррекции диаметра и длины обработки показа величины перемещений и размеров снимаемых слоев металла при шлифовании с помощью световой индексации) 5) расширение типажа фрезерных станков с контурным и пространственным копированием, а также для обработки по чертежу [11].  [c.22]

Между расчетными схемами упругих систем станков, относящихся к различным группам, имеется сходство, чем можно пользоваться при расчетах. Так, станки, которые обрабатывают поверхности тел вращения, имеют сходные расчетные схемы системы заготовки (например, токарные и шлифовальные). Станки с главным вращательным движением имеют сходные расчетные схемы вращающихся систем. У токарных станков — это система заготовки, у фрезерных и расточных — это система инструмента. Расчетные схемы этих систем представляют собой упругие балки на упругих опорах с сосредоточенными массами. Имеют много общего и расчетные схемы узлов, осуществляющих движение подачи, например суппортов токарных станков и столов фрезерных станков. Расчетные схемы таких узлов представляют собой совокупность упругих или жестких тел, разделенных упругими стыками. Выше использовалась аналогия между системой ползуна тяжелого расточного станка и системой ползуна карусельного станка. В однотипных станках сходны и расчетные схемы, особенно расчетные схемы систем, определяющих колебания. Например, в токарных станках различных типов (универсальных, многорезцовых, с числовым программным управлением) при всем различии в частотах вибраций (от 80 до 340 Гц), а также в предельных режимах резания, при которых начинают возникать вибрации, форма колебаний системы заготовки остается одной и той же. Из этого вытекает общность расчетных схем для токарных станков. Это подтверждается многочисленными фактами о влиянии системы заготовки.  [c.174]


Измерительная система при путевом контроле включает датчики и блок связи с устройствами числового программного управления, который формирует сигналы обратной связи,. Различают два основных типа систем путевого контроля. — аналоговые и дискретные. В аналоговых системах датчик непрерывно выдает информацию, которая основана на соответствующем непрерывном изменении той или иной физической его характеристики, В дискретных системах датчик выдает сигнал через определенные промежутки времени в зависимости от перемещения рабочего органа станка. Импульсные датчики (рис, 279, а) при равномерной скорости движения дают постоянную частоту выходных сигналов, а кодовые датчики (рис. 279, б) используют схему совпадения.  [c.322]

Промышленный робот имеет много общих черт со станком с числовым программным управлением (ЧПУ). Для обеспечения движений механической руки робота используется технология ЧПУ того же типа, что и для управления станками. Однако типичный робот легче и портативнее, чем станок с ЧПУ, его применения носят более общий характер и обычно включают в себя манипулирование деталями. Кроме того, программирование робота отличается от программирования систем числового программного управления (СЧПУ). Традиционно программы для СЧПУ составлялись автономно, причем команды управления станком заносились на перфоленту. Робот обычно программировался непосредственно с хранением команд в электронной памяти системы управления. Несмотря на эти различия, между роботами и станками с ЧПУ имеется определенное сходство в том, что касается силового привода, систем обратной связи, тенденции к управлению от ЭВМ и даже некоторых промышленных приложений.  [c.256]

Внедрению ЭВМ в дискретное производство способствуют следующие два фактора. Во-первых, это резкое снижение в последние годы их размеров и стоимости. Сегодня обоснование приобретения вычислительной техники для управления технологическим процессом не является уже такой трудной задачей, как это было 10-15 лет назад. Создание микропроцессорной техники существенно уменьшило стоимость ЭВМ и расширило возможности их использования в системах управления технологическими процессами. Во-вторых, накоплен достаточный опыт в области разработки программного обеспечения, что привело к снижению стоимости вновь создаваемых систем управления технологическими процессами. Фирмы, располагающие парком разнообразных станков, могут использовать универсальное программное обеспечение для различных типов станков, что ведет к умеренной его стоимости в расчете на один станок. Хорошим примером, иллюстрирующим такой подход, является использование систем числового программного управления в металлообрабатывающей промышленности.  [c.434]

Программирование цикла станков с программным управлением. Составление программы обработки для станков с цикловыми и цифровыми системами программного управления требует значительно большего количества расчетов, чем при составлении программы для систем управления с распределительным валом и кулачками. При этом объем перерабатываемой информации и количество расчетов в значительной степени зависят от выбранного типа оборудования, сложности изготовляемой детали, а также формы рабочего инструмента. Использование станков с большим числом управляемых координат, применение различных устройств, расширяющих его технологические возможности, как правило, позволяют сократить объем перерабатываемой информации, а следовательно, и количество расчетов при составлении программы.  [c.324]

Применение станков с автоматической сменой инструментов в мелкосерийном производстве оказывается рентабельным, несмотря на высокую их стоимость. Так, использование станков такого типа одной из станкостроительных фирм Англии при обработке средних и крупных корпусных деталей фрезерных станков обеспечило рост производительности в 5 раз. Основными предпосылками появления станков с автоматической сменой инструментов послужили общее повышение требований к мобильности производства в машиностроении и необходимость автоматизации мелкосерийного производства. Благоприятными обстоятельствами явились отработка систем и накопление опыта эксплуатации станков с программным управлением.  [c.469]

Большие работы проводятся в области модернизации оборудования. Универсальные станки оснащаются загрузочными и измерительными устройствами, зажимными и установочными приспособлениями, гидрокопировальными суппортами, автоматическими загрузочными и другими устройствами. Большая программа намечена также по созданию новых типов высокопроизводительных станков и комплексных автоматических линий. В дальнейшем предстоят большие исследовательские работы в области применения программных систем управления с помощью магнитной ленты или перфорационных карт и лент, использование которых позволит обойтись без шаблонов, требующих точного исполнения. Это особенно важно для предприятий с часто меняющимися объектами производства.  [c.486]

В последнее время в Советском Союзе приступили к изготовлению металлорежущих станков с автоматической сменой инструмента при программном их управлении. Эти станки, называемые многооперационными, предназначены для обработки корпусных деталей с отверстиями, а также деталей типа рычагов, плит, кронштейнов и т. п. Особенностью станков является автоматическая смена инструмента, который в больших количествах (иногда свыше 100) находится в специальных магазинах. Данные станки представляют собой усовершенствованные конструкции станков и систем управления. Несмотря на усложнение конструкций и удорожание станков, их применение оказывается рентабельным благодаря повышению производительности, в основном в результате резкого сокращения вспомогательного времени и улучшения организации труда, повышения точности обработки.  [c.5]


Ввиду того, что в системе управления каждым из станков нет счетно-решающего устройства, на каждом станке имеется трехкоординатная контурная система управления типа Bendix для преобразования сигналов программы в команды исполнительным органам станка. Это облегчает настройку станка при переналадке на другую программу. Вращение щпинделя изделия вокруг вертикальной оси является индексирующим. Оно осуществляется червячной передачей с точностью индексации 0,1°. Перемещения вдоль горизонтальной оси X и вертикальной оси Z осуществляются по направляющим с помощью прецизионных шариковых винтов с точностью позиционирования до 0,0025 мм. Форма детали, которую необходимо придать заготовке в процессе шлифования, записывается в виде числового кода, который вводится оператором в систему программного управления станком.  [c.138]

В СССР и за рубежом разрабатывают многономенклатурные автоматические линии с программным управлением, предназначенные для групповой обработки технологически однородных деталей. На всех станках линии программируют ускоренные и рабочие перемеш,ения инструмента, переключение режимов резания, останов и пуск шпинделей, загрузку, разгрузку, зажим и разжим деталей, а также переход с обработки деталей одного типа на другой. Предусматривают систему программного управления транспортно-загрузочными устройствами, в состав которых входят и накопители заделов, обеспечивающие оити- ыальный порядок загрузки станков. Подобная линия с программным управлением для обработки рычагов и кронштейнов построена фирмой Kearney Tre ker (США) и предназначена для выполнения фрезерных, сверлильных и расточных работ.  [c.12]

В настоящем разделе мы рассмотрим внутреннюю струьстуру приборов управления низшего типа. В качестве примера рассмотрим систему программного управления токарным станком на основе магнитной ленты, разработанную Институтом физики АН УССР [3].  [c.22]

Системой программного управления с обратной связью оснащены фрезерные станки 6441ПР, которые обеспечивают высокую точность обработки. Типовыми элементами систем программного управления кроме программоносителей являются считывающие устройства, механизмы ввода программы, передаточно-преобразующие устройства, исполнительные устройства, приводные элементы, связывающие исполнительные устройства с целевыми механизмами станка, датчики обратной связи и т. д. Все они, за исключением передаточно-преобразующих устройств (электронные блоки), являются конструктивными элементами, представляющими значительный интерес и для других типов автоматов.  [c.303]

Число державок инструментов и их тип определяются требуемой сложностью профиля обрабатываемой детали. На переднем платике 12 станины могут устанавливаться приспособления, обычно применяемые на автоматах фасонно-продольного точения. Предполагаемая конструкция станка посравне-нию с существующими фасонно-продольными автоматами существенно упрощена благодаря устранению кулачков суппортов, передаточных звеньев и самих суппортов, а качество работы станка улучшено. Останов,, переключение с рабочей подачи на быстрый поворот и обратно осуществляются от путевых упоров 13, установленных на круговом суппорте, с помощью путевых переключателей, а включение кругового суппорта — с помощью путевых переключателей, срабатывающих от упоров, установленных на механизме продольной подачи прутка. Круговой суппорт может работать и от регулируемого привода с помощью систем программного управления. На суппорте жестко закрепляются несколько инструментов с микрометрической регулировкой на размер.  [c.366]

Для обозначения различных моделей металлорежущих станков принята специальная система, применение которой позволяет по цифровому и буквенному индексу станка определить его тип, основные технологические Шфаиетры, класс точности и систему программного управления.  [c.458]

Цель интеграции заключается в сокращении производственных расходов. Сочетание в ИПК и ГПС систем типа САПР и АСУ с лрограммно-техническими средствами автоматизации производства типа станков с числовым программным управлением (ЧПУ), роботов и манипуляторов обеспечивает максимальный техникоэкономический эффект от внедрения ЭВМ в сферу промышленности.  [c.32]

От отраслевых ДМП логичен переход к предметным, которые характеризуют всего лишь одну техническую систему в отрасли, скажем, токарный станок. Можно говорить и о разновидностях предметных ДМП. Взяв за прототип станочек Нартова и проследив по узлам цепочку изменений (по наиболее важным деталям, узлам), которая в итоге привела через токарно-винторезный станок мод. 1К62 к токарному агрегату с программным управлением, можно построить эволюционную ДМП. Такие ДМП можно строить для различных типов металлорежущих станков — токарных, фрезерных, сверлильных и др. Систематизация примеров-нриемов, типичных для данных отрезков времени, приводит к ДМП—срезу во времени. Наконец, могут быть ДМП, отражающие преимущественные приемы, используемые для проектирования однотипных машин в различных странах (срезы во времени и эволюционные), группы любимых приемов в отдельных конструкторских коллективах и группах и др. Возможны, наконец, и индивидуальные ДМП, раскрывающие индивидуализированные группы приемов отдельных выдающихся изобретателей,— Эдисона, Тесла, Дизеля, Шухова и др.  [c.126]

В настоящее время КИМ выпускают с ручным управлением и автоматизированной обработкой результатов измерения, а также с полностью автоматизированным процессом обработки, измерения и управления. Разрабатываются возможности сочетания КИМ с технологическим оборудованием (в первую очередь, со станками с числовым программным управлением). Дальнейшее развитие КИМ происходит в направлении создания измерительно-информационных систем с полной или частичной автоматизацией, с математической обработкой результатов измерения при установке детали без ее ориентации в пространстве и измерении в динамическом режиме [2]. В информационную систему КИМ вводятся данные чертежа, создаются КИМ самообучающего типа, корректирующие программу по мере измерения деталей. Многие КИМ входят в комплексные участки с дистанционным централизованным управлением от ЭВМ. Современные КИМ пригодны для решения широкого спектра измерительных задач в различных отраслях промышленности.  [c.318]

Системы адаптивного программного управления (АПУ) станками сложнее обычных систем ЧПУ, поэтому для их программноаппаратной реализации обычно используются DN -системы на базе мини-ЭВМ с развитым программируемым интерфейсом. В ряде случаев оказывается возможным реализовать адаптивное управление и на базе мультимикропроцессорных систем ЧПУ типа N посредством введения соответствующих элементов адаптации. Расширение функциональных и адаптационных возможностей систем ЧПУ достигается посредством их простого усовершенствования за счет наращивания программного обеспечения или подключения дополнительных микропроцессоров, реализующих алгоритмы адаптации и искусственного интеллекта. При этом станок может работать в основном в обычном режиме ЧПУ, а переход к АПУ производится автоматически в тот момент, когда в этом возникает необходимость.  [c.119]

В универсальных копировально-про-шивочных электроэрозионных станках используют две системы ЧПУ систему адаптивного управления с предварительным набором координат и режимов по программе и систему адаптивно-программного управления по трем координатным осям. В станках этого типа системы ЧПУ обеспечивают планетарное движение заготовки в следящем режиме, автоматиче-  [c.446]


Наиболее распространенным направлением в обеспечении пе-реналаживаемости станков является применение в них систем ЧПУ типа N , построенных на базе ЭВМ (микропроцессора, мини-или микроЭВМ) с цветным дисплеем. Программное управление от ЭВМ обеспечивает сокращение времени на переналадку оборудования, автоматизацию подготовки управляющей программы  [c.353]

В ХП пятилетке будет увеличено производство металлорежущих станков с числовым программным управлением (ЧПУ), в том числе мно-гооперационных станков (типа "обрабатывающий центр"), гибких производственных систем (ГПС), автоматизированных и роботизированных комплексов и линий [ij.  [c.5]

Металлорв кущие станки оснащаются следующими видами программного управления цикловым (ЦПУ) и числовым (ЧПУ). Станки с ЦПУ имеют позиционную систему с панеляло упоров, отключающих подачу суппорта или ползуна. Такую систему используют, например, для обработки заготовок типа ступенчатых валов. Программа задается расстановкой специальных стержней-штекеров в гнездах панели, расположенной в отдельном пульте системы ПУ. Панель позволяет запрограммировать 60—120 различных переходов. Во время работы оператор может видеть на световом табло действительное положение рабочих органов станка.  [c.611]

Токарный станок с цифровым программным управлением (фирма Уорнер Свези ). Такой станок, имеющий обычную компоновку, не обеспечивает наиболее полного использования возможностей, создаваемых системой управления. Так при обычной компоновке затруднена обработка с одной установки наружных и внутренних поверхностей деталей типа дисков и втулок, затруднен отвод стружки и др. Поэтому применение систем цифрового программного управления вызвало появление токарных станков, имеющих новую компоновку (рис. 31, а). Станок оснащен двумя суппортами 7 и 2, расположенными на наклонных направляющих. Суппорт 1 (рис. 31, 6) несет дисковую револьверную головку 2, предназначенную для закрепления резцов, используемых при обработке наружных поверхностей. Такая конструкция головки обладает высокой жесткостью и позволяет закреплять резцы с малым вылетом, чем обеспечивается высокая жесткость всей системы в работе. Револьверная головка может перемещаться как в продольном направлении, так и в направлении оси шпинделя (в поперечном направлении).  [c.207]

Документ предназначен дая наладки инструмента или специального оборудования. Применяется ] 1>по11ИИ о ц.но к ОК, Характерен для станков с числовым программным управлением и гибких производственных систем. В комплекте документов на технологические процессы располагается посис ОК, Характерен для-всех типов производств  [c.76]

Система управления предопределяет и перечень самих управляющих механизмов. Как сказано выше, любая развитая система автоматического управления включает следующие управляющие элементы программоноситель, считывающее устройство, механизм ввода программы, передаточно-лреобразующее устройство, исполнительное устройство, систему обратной связи. Конструктивное воплощение каждого элемента зависит также от принятой системы управления, прежде всего от вида программоносителей. Рассмотрим с этих позиций кинематику и конструкцию механизмов управления наиболее распространенных типов автоматизированного оборудования одношпиндельных и многошпиндельных автоматов с распределительным валом, копировальных полуавтоматов, станков с программным управлением, многоцелевых станков с программным управлением.  [c.274]

Примером одной из первых в мировой практике программных систем для обработки деталей типа тел вращения служит комплекс Ко1а-Р-125МС, созданный станкостроительным комбинатом им. 7 октября (ГДР). В эту систему входят семь станков один токарный, три токарно-револьверных, два вертикально-фрезерных и один круглошлнфовальный все станки с цифровым программным управлением. Эти станки имеют круговое расположение под поворотным центральным магазином 1 (рис. ХХ-14), с которым их  [c.630]

Цикловое программное управление успешно применяют также на крупных бес1 онсольно-фрезерных станках, токармых станках разных типов и назначения. Достоинство станков с ЦПУ — простота систем управления и значительно меньшая стоимость по сравнению со станками и системами числового программного управления. Для внедрения и эффективного использования станков с ЦПУ не нужны коренные изменения в подготовке и организации производства, создание специальных технологических служб. Наладка и обслуживание станков не требует такой высокой квалификации, как для станков с ЧПУ. Применять станки с ЦПУ наиболее целесообразно в условиях серийного производства для обработки заготовок относительно простой формы при длительности обработки партии не менее одной-двух смен.  [c.214]


Смотреть страницы где упоминается термин Типы систем программного управления станками : [c.54]    [c.98]    [c.98]    [c.760]    [c.87]    [c.66]    [c.494]    [c.225]    [c.228]    [c.201]   
Смотреть главы в:

Станочник широкого профиля Изд3  -> Типы систем программного управления станками



ПОИСК



Кузнецов. Позиционная система числового программного управления типа СЦ-7М для сверлильного станка с револьверной головкой

Программное управление станкам

Программные

Системы программного управления

Системы программные

Стаи типа

Типы ASE-систем

Управление программное

Управление станком



© 2025 Mash-xxl.info Реклама на сайте