Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дислокация Понятие

Дислокации - дефекты кристаллической решетки металлических материалов, состоящие в наличии дополнительной атомной полуплоскости. Материалы характеризуются плотностью дислокаций Существуют понятия равновесной плотности дислокаций и критической плотности дислокаций  [c.148]

Понятие дислокации в смектике имеет тот же смысл, что и в обычном кристалле. Разница состоит лишь в том, что ввиду одномерной (вдоль оси г) периодичности микроскопич кой структуры смектиков вектор Бюргерса дислокации в них всегда направлен по оси Z, а по величине равен целому кратному от периода а структуры.  [c.235]


Представление о дислокациях возникло в связи с попытками объяснения процессов скольжения в кристаллах, в первую очередь при пластической деформации. Для характеристики процессов скольжения вводят понятие плоскости скольжения, по которой происходит соскальзывание одних атомных плоскостей по другим, и направления скольжения. Части кристалла между плоскостями скольжения в принципе не должны быть искажены. Если при пластической деформации произошел процесс скольжения, то в дальнейшем возможно как движение по уже возникшим плоскостям скольжения, так и по новым. Комбинация плоскости и направления скольжения составляют систему скольжения. Так, ГЦК кристаллы характеризуются четырьмя плоскостями скольжения типа (111) и тремя направлениями [110]. В итоге возникает 12 систем скольжения.  [c.240]

Для того чтобы ввести понятие о кристаллической дислокации и установить ее связь с упругой дислокацией, рассмотрим модель простейшего кристалла, решетка которого такова, что соседние атомы помещены в вершинах куба. На рис. 14.1.1 изображена одна атомная плоскость такой решетки, линии, соединяющие соседние атомы, образуют одинаковые квадраты. Такое расположение атомов возможно тогда, когда кристалл свободен от дефектов. При наличии дефектов сохранение правильной квадратной сетки уже невозможно, силы, действующие на каждый атом со стороны его соседей, становятся неодинаковыми и решетка искажается. На рис. 14.1.2 изображена атомная плоскость искаженной решетки. Вне области, ограниченной контуром Г, искажение, как видно, невелико. Кристалл с таким незначительным искажением решетки называется хорошим кристаллом, точнее, область вдали от дефекта называется хорошей областью. Но внутри контура Г, заключающего в себе дефект.  [c.454]

Дислокации — один из наиболее распространенных видов нарушений регулярности структуры кристаллических решеток, понятие которых первоначально было введено совершенно абстрактно,  [c.131]

Основные дополнения отразили развитие отдельных разделов, интерес к которым повысился со времени появления в 1951 г. второго издания. В главах 3 и 4 введен анализ влияния концов и теория собственных решений, связанных с принципом Сен-Ве-нана. Ввиду быстрого роста приложений дислокационных упругих решений в науке о поведении материалов, эти разрывные в смещениях решения излагаются более подробно (теория краевых и винтовых дислокаций в главах 4, 8, 9 и 12). К главе 5 добавлены вводные сведения о методе муара с иллюстрацией его применения на практике. Изложение понятия об энергии деформации и вариационных принципов проведено в трехмерном случае и включено в главу 9, что дало основу для новых разделов по термоупругости в главе 13. Обсуждение использования комплексных потенциалов для двумерных задач пополнено группой новых параграфов, основанных на хорошо известных теперь методах Н. И. Мусхелишвили. Этот подход несколько отличается  [c.12]


GI2—Gl значительны и имеют порядок теоретической прочности кристалла. Так как обычно tпонятия силы f, действующей на единицу длины дислокации, и силы fa линейного натяжения дислокации [см. формулу (35)]. Рассмотрим задачу о равновесии дислокационного отрезка, закрепленного на концах, в поле постоянного напряжения т (рис. 33). На элемент дуги 6L действует сила fi=/6L =  [c.65]

Позднее понятие полигонизации значительно расширилось. Под полигонизацией стали понимать сложные процессы перераспределения и взаимодействия дислокаций, приводящие к образованию субзерен в моно- и поликристаллах, деформированных множественным скольжением, малоугловые субзеренные границы кото-  [c.306]

Пояснение понятия о поверхностных дислокациях дано ниже.  [c.533]

Отличительной особенностью дислокационного подхода является принципиальная невозможность допущения об идеально пластичном теле, поскольку дислокации как носители деформации нельзя рассматривать в отрыве от их полей упругих напряжений. В результате получается, что дислокации обеспечивают деформацию, а их упругие поля — упрочнение материала, т. е. деформация и упрочнение являются в дислокационном подходе неразрывными понятиями.  [c.7]

К сожалению, соотношение (1.21) выполнялось в ограниченном интервале напряжений и температур и особенно большие сложности возникали при попытке его использования для объяснения результатов испытания чистых металлов с ГЦК- и ОЦК-ре-шетками. В связи с этим были развиты представления о конкурирующей роли диффузии вдоль линий дислокаций ( трубчатая диффузия), что привело к введению понятия эффективного ко эффициента диффузии 136]  [c.23]

Одно из основных достоинств модели Ли [54, 1031 заключается в новой интерпретации коэффициента/(у, который оказывается пропорциональным квадратному корню из плотности выступов на границе. Эта величина представляется, конечно, более предпочтительной для теоретического рассмотрения по сравнению с мало конкретным понятием прочности границы, определяющей Ку в теориях скоплений. Поскольку, как считает Ли 154, 103], выступ является абсорбированной дислокацией, то он сохраняет ее свойство взаимодействовать е растворенными атомами, понижая при этом свою энергию. Таким образом, открывается возможность анализа зависимости Ку от концентрации твердого раствора, режимов термической обработки и условий испытания.  [c.52]

Для оценки направления возможной перестройки дислокационной структуры и объяснения механического поведения металла при повторной деформации в работе [371] предлагается использовать, исходя из факта перестройки структуры, понятие эквивалентных деформаций , т. е. деформаций, которые создают одинаковую плотность дислокаций при разных температурах. Такое определение позволяет в рассматриваемом случае первичную деформацию молибдена горячим прессованием (е = 2,04) представить для любой температуры повторного нагружения соответствующей величиной эквивалентной деформации (е,кв).  [c.177]

Дилатация, связанная с ангармоничностью, может быть описана моделью нелинейного расширения дислокаций [7 ], дающей возможность вычислить среднюю дилатацию AV/У. Использование этой модели позволило проследить [8] влияние среднего нелинейного расширения равномерно распределенных дислокаций на электромагнитные явления, связанные с процессами переноса носителя внутри металлов. При этом не использовалась детальная модель потенциала деформации, а принималась предположительная зависимость электромагнитных параметров от величины нелинейного расширения, содержащая коэ( ициенты, значение которых, вообще говоря, неизвестно. С точки зрения понятия потенциала деформации обнаруженное влияние пластической деформации на процессы движения носителя в металле  [c.13]

Для энергетического описания пластической деформации введем понятие химического потенциала дислокаций.  [c.46]

Понятие сродства А характеризует зарождение и движение дислокаций как единый процесс. Знак изменения этой величины, как обычно, противоположен знаку изменения энергии активации процесса. Это означает, что направление процесса соответствует уменьшению напряжения (релаксации) после продвижения и разрядки дислокаций.  [c.48]


Диски отражательные (маслосбрасывающие) 3. 102-104 Дислокации 1. 290 - Виды 1. 172 - Понятие 1, 171  [c.341]

В металлах должна наблюдаться полная аналогия ячейкам Бенара с той лишь разницей, что скорости перемешивания среды (т. е. диффузионный массоперенос) существенно медленнее. Вот в чем, на наш взгляд, состоит причина смещения рисок, нанесенных на границы зерен, причем эффект этот оказалось возможным объяснить и без использования понятия о зернограничных дислокациях.  [c.252]

Понятие о дислокациях и других дефектах кристаллической решетки  [c.12]

Отжиг. Традиционно сложившееся понятие отжиг охватывает несколько отличающихся друг от друга по режиму операций термообработки, объединенных единой целью — привести сталь в термодинамически равновесное состояние с минимальной плотностью дислокаций (10 —10 см ), по возможности низкой твердостью и высокой пластичностью.  [c.110]

Дислокации бывают краевые (линейные), винтовые и смешанные. Первоначально было введено понятие о краевых дислокациях. В дальнейшем это понятие было расширено и введено понятие  [c.24]

Понятие дислокационного ансамбля включает в себя микронные участки материала, характеризующиеся некоторой критической скалярной плотностью дислокаций, при которой а) силы взаимодействия между отдельными дислокациями/ = Vp) /2 соизмеримы с действием на них сил со стороны внешних напряжений/ = [140] б) протяженность рассматриваемого участка превышает радиус экранирования упругого поля дислокаций [139, 141]. В таких условиях дислокации образуют пространственные квазиравновесные конфигурации (низкоэнергетические дислокационные субструктуры [134]). По мнению авторов [134, 139], в этом случае причиной расслоения изначально однородного распределения дислокаций является их стремление к относительному минимуму полной энергии упругого поля дислокационной подсистемы.  [c.86]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]

Выравнивание деформации по всему поликристаллическому агрегату достигается за счет известного условия [108] множественного скольжения (условие Мизеса), а различие но напряжениям на границах может быть ликвидировано путем эмиссии некоторой дополнительной плотности дислокаций, вызывающих повышение сдвиговых напряжений до требуемого уровня. Чтобы при этом не возникало дополнительное различие в деформациях отдельных зерен, такая плотность дислокаций должна набираться из так называемых геометрически необходимых дислокаций, понятие о которых впервые было введено Эмби [109]. Плотность геометрически необходимых дислокаций р , должна быть структурно чувствительной величиной, реагирующей на частоту изменения ориентировок зерен, т. е. быть пропорциональной отношению Ю (число зерен на единицу длины),  [c.52]

Некоторые из свободных дислокаций, йе-шизанных в гранищх субзерен, в процессе ползучести становятся потенциально подвижными. Однако в каждый данный момент движутся лишь некоторые из этих потенциально подвижных дислокаций В дальнейш1с л будем называть их движущимися дислокациями. Понятия свободных, подвижных и движущихся дислокаций необходимо различать. Плотность дислокаций-р , входящая в уравнение Орована [49, 50]  [c.31]

Для объяснения последнего факта потребовалось введение понятия "дислокация". Однако вопрос о целесообразности и предназначении их для конденсированной среды остается открытым. Трудно согласиться с идеей о случайном характере формирования одного из важнейщих свойств твердых тел - пластичности при вероятностном распределении дислокаций  [c.64]

Существенное различие теоретической и фактической прочности металла привело к мысли о необходимости рассматривать не идеальный кристалл с правильным расположением атомов, а реальный, содержащий дефекты (см. гл. II). В 1934 г. независимо друг от друга Тэйлором, Орованом и Поляни впервые введено представление о сдвиге (скольжении) одной части кристалла относительно другой посредством движения дислокации. Введение этого понятия было революционным для физики прочности и пластичности. Наиболее интенсивно теория дислокаций развивалась в послевоенные годы и в настоящее время стала неотъемлемой частью физики твердого тела, физических основ прочности и пластичности.  [c.21]


Обратимся теперь к установлению формулы, выражающей отток энергии dAdl через характеристики состояний на краях распространяющихся разрывов. Устанавливаемая ниже формула дает величину dA dт, не только в случае расширения тре-пщны, но и в случае расширения разрывов типа поверхностных дислокаций. Поэтому остановимся предварительно на разъяснении понятия о дислокациях, распределенных непрерывно вдоль некоторой изолированной поверхности 2.  [c.541]

Необходимо в этом отступлении сказать еще несколько слов о терминологии. В общем случае упрочнение, достигаемое с применением дисперсных частиц второй фазы, называют дисперсным упрочнением. Однако довольно часто в литературе с той же целью неправильно используется термин дисперсионное упрочнение , который на самом деле справедлив только для рассматриваемого нами частного случая упрочнения когерентными выделениями. Происхождение этой терминологии и связанные с ней ошибки И. Н. Францевич объяснил заимствованием ее из физической химии, в которой существуют понятия, дисперсная фаза (частицы) и дисперсионная фаза (матрица). Поэтому дисперсионное упрочнение — это фактически упрочнение матрицы, создаваемое полями упругих напряжений вокруг когерентных частиц, т. е. основное сопротивление движению дислокаций оказывают не сами частицы, а поля упругих напряжений в матрице. С потерей же когерентности, например, при росте частиц исчезают эти упругие поля и теперь только сами частицы препятствуют движению дислокаций. Такой переход от одного вида упрочнения к другому достаточно, наглядно разобран Анселом [1381.  [c.73]

Перейдем теперь к рассмотрению неравновесных границ зерен, т. е. границ, содержащих избыточные дефекты в структуре, обычно привнесенных при различных воздействиях на материал. Термин неравновесные границы был введен Грабским и Кор-ским еще в 1970 г. [189], но его стали использовать в научной литературе значительно позже [106, 111, 146, 190-201], причем им обозначали самые разные состояния границ. Этим термином называют, например, границы с неравновесной концентрацией точечных дефектов [190, 191], границы с искривленной поверхностью [191], границы, содержащие захваченные решеточные дислокации и внесенные ЗГД [111, 146, 190-201] и т. д. При этом нужно учитывать, что любая граница сама по себе является неравновесным дефектом в кристалле, поэтому понятие о термодинамическом равновесии границ зерен в известной мере условно. Более строгое описание неравновесных границ было предложено Р. 3. Валиевым с соавторами [111, 146, 172].  [c.93]

Области метастабильностн в" и в показаны на рис. 85. Видно, что для сплавов, содержащих> 1 % Си, старение может происходить через всю последовательность превращений как при естественном старении при комнатной температуре, так и при искусственном при температуре в интервале 160—200 °С. Это возможно, если бы сплав имел структуру идеального кристалла без дислокаций и границ зерен. Однако выделения из реального пересыщенного раствора не могут быть даже качественно поняты, основываясь только на знаниях стабильных и метастабильных фазовых диаграмм. Знания роли дефектов решетки как мест зарождения являются необходимыми для понимания вида и распределения выделений в зависимости от температуры раствора, скорости закалки, пластической деформации, температуры старения и так далее. Дефектами решетки, которые влияют на зарождение и рост выделений, являются вакансии, дислокации, границы зерен и другие несовершенства структуры.  [c.236]

Керамическими называются неорганические материалы со сложной гетерогенной структурой, включающей кристаллическую и стекловидную фазы. Кристаллы в керамиках отличаются от металлических кристаллов наличием других типов физических связей — ковалентных или ионных. В ковалентных кристаллах существует высокое, по сравнению с металлическими кристаллами, сопротивление скольжению дислокаций, в ионных же кристаллах эти скольжения возможны лишь по ограниченному числу кристаллографических плоскостей. В силу этих причин, а также из-за сопротивления стекловидной фазы и наличия микродефек-тов керамики являются, как правило, хрупкими или, во всяком случае, малопластичными материалами [44, 74, 90, 104]. Существует и более узкое понятие о керамических материалах как  [c.38]

В зависимости от взаимного расположения дислокаций вызываемые ими напряжения могут либо складываться, образуя макронапряжения, убывающие на расстояниях порядка размеров кристалла, либо компенсировать друг друга и убывать на расстояниях порядка расстояния между дислокациями, образуя микронапряжения. По мере приближения к дефекту напряжения возрастают по величине и могут достигать значений порядка предела прочности материала. На расстояниях, близких к центру дефекта, в области очень сильных искажений кристаллич. решётки смещения атомов настолько велики, что деформации достигают величины порядка единицы, понятие напряжений теряет определ. физ. смысл и для описания искажения возникает необходимость учёта дискретности среды, её конкретной атомарной структуры. М. определяют ряд физ. свойств кристаллов, и прежде всего закономерности их пластич. деформирования и разрушения. МИКРОНЕУСТОЙЧИВОСТИ ПЛАЗМЫ -- мелкомасштабные плазменные неустойчивости, опасные для удержания плазмы, к-рые не приводят к немедленному разрушению равновесного состояния плазмы, а оказывают влияние на её удержание через процессы переноса — диффузию частиц и теплопроводность. Именно в результате развития М. п. появляются мелкомасштабные пульсации электрич., мага, полей и концентрации плазмы, к-рые увеличивают потоки частиц и тепла поперёк магн. поля, удерживающего плазму.  [c.138]

Для удобства анализа понятие структуры было дифференцировано, что характерно именно для этого метода исследования (анализа), введено в обращение большое количество качественных и количественных характеристик структуры, понятие масштабных уровней. На каждом масштабном уровне используют свои характеристики структуры вектор Бюргерса 6, параметр кристаллической решетки а, атомный (ионный) радиус г, конфигурация ионного остова - для атомного уровня размер субзерна или дислокационной ячейки d , , плотность дислокаций р, в том числе подвижных р , угол разориен-тации ячеек в — для субмикроскопического уровня размер зерна количество и характерный размер фаз - для микроуровня объемы ротации, плотность дисклинаций или дисклинационных диполей -для мезоуровня наличие пор, усадочных раковин, ликваций - для макроуровня.  [c.8]

Условия возникновения зародышей новых зерен и их роста сформулированы во многих работах, например в [4, 47], исходя из понятий о напряжениях, создаваемых в материале дислокациями, генерированными во время пластической деформации. Для образования зародыша нового зерна размером do требуется плотность дислокаций ро = y//doWj, где - энергия дислокации единичной длины у/-удельная поверхностная энергия межзеренной границы.  [c.123]

Сложность получения высокой прочности объясняется такл е противоречивой сущностью самого понятия прочность. Высокопрочный в инженерном смысле материал должен обладать высоким сопротивлением пластической деформации и высоким сопротивлением разрушению. Первое может быть обеспечено, если движение дислокаций максимально ограничено, второе требует подвижности дислокаций, необходимой для перераспреде.ления напряжений и уменьшения их концентрации.  [c.283]


Тейлор, придавая первостепенное значение взаимосвязи между напряжениями и плотностью дислокаций, ввел в рассмотрение понятие о равновесной дисл<эка1Щонной конфигурации, состоящей из чередующихся рядов  [c.84]


Смотреть страницы где упоминается термин Дислокация Понятие : [c.139]    [c.129]    [c.149]    [c.185]    [c.70]    [c.42]    [c.595]    [c.503]    [c.14]   
Механические свойства металлов Издание 3 (1974) -- [ c.79 ]



ПОИСК



Дислокации 1. 290 - Виды 1. 172 - Понятие

Дислокации 1. 290 - Виды 1. 172 - Понятие винтовые

Дислокации 1. 290 - Виды 1. 172 - Понятие линейные

Дислокация

Основные понятия теории дислокаций

Понятие о дислокациях и других дефектах кристаллической решетки

Понятие о теории дислокации



© 2025 Mash-xxl.info Реклама на сайте