Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллическая структура , химическая связь

Для возможности изучения скорости движения дислокаций плотность состаренных дислокаций должна быть меньше 10 —10 см , чтобы они не мешали следить за скоростью передвижения свежих дислокаций, вводимых в кристалл путем нанесения на его поверхность царапин и уколов. Импульсное нагружение вызывает движение или изолированных друг от друга одиночных дислокаций, или отдельных групп. Длина пробега изолированных одиночных или головных дислокаций в отдельных группах зависит от содержания примесей, структуры, сил химической связи, температуры и уровня приложенного напряжения. Различный характер зависимости скорости движения дислокаций от напряжения и температуры в кристаллах с разным типом химической связи и кристаллической решетки приводит автора к заключению, что движение дислокаций обусловлено взаимодействием их с фононами и, возможно, с электронами.  [c.110]


Полупроводниковые кристаллические соединения типа А " В представляют собой химические соединения, образующиеся при взаимодействии элементов В и В подгрупп периодической системы элементов Менделеева. Эти соединения характеризуются наличием у А на внешних оболочках по 3 валентных электрона в состоянии а у В по 5 электронов в состоянии и, вследствие этого, в химических соединениях А В на каждый атом приходится такое же, как и в элементах IV группы, количество электронов, а отсюда идентичность в кристаллической структуре и электронных свойствах этих соединений с алмазом, кремнием, германием и другими элементами IV группы. Однако в отличие от элементов IV группы, имеющих в кристаллической структуре только гомеополярные связи, соединения типа А В имеют как гомеополярные,  [c.249]

При взаимодействии атомов одного сорта с атомами другого сорта характер химической связи определяется их способностью захватывать или отдавать валентный электрон. Эта способность характеризуется так называемой электроотрицательностью атомов X. По существу, электроотрицательность — это параметр, выражающий тенденцию атома притягивать к себе электроны в конкретном твердом теле. Электроотрицательность — относительная мера взаимодействия атомов, она не является строго физической величиной, поскольку она не постоянна и зависит от природы другого атома, с которым химически связан данный атом. Один и тот же атом в химической связи иногда одновременно может выступать и как электроположительный, и как электроотрицательный. Электроотрицательность очень слабо зависит от типа связи и от конкретных особенностей кристаллической структуры, что делает ее некоторым объективным параметром атомов, который полезен при обсуждении свойств твердых тел.  [c.57]

Действие ядерных излучений на вещество в общих чертах состоит из следующих процессов. Во-первых, налетающие частицы, сталкиваясь с электронами, выбивают их, производя в веществе ионизацию (иногда возбуждение) атомов. Во-вторых, налетающие частицы достаточно высоких энергий при неупругом ядерном столкновении с ядрами могут частично разрушать ядра, например, выбивая из них протоны и нейтроны, ведет к появлению в веществе новых изотопов, в том числе новых элементов. Эти новые изотопы часто оказываются радиоактивными. В результате в веществе возникает наведенная активность. В-третьих, при выбивании электронов во многих веществах, особенно органических, могут разрушаться или, наоборот, возникать различные химические связи, что приводит к изменению химической структуры вещества. В-четвертых, при упругих столкновениях налетающих частиц с ядрами атомы вещества выбиваются из своих положений в кристаллической решетке в другие узлы или в междоузлия. В результате в решетке образуются разного рода дефекты, влияющие на различные физические свойства кристаллов.  [c.456]


III группы — алюминия, галлия, индия с элементами V группы — фосфором, мышьяком и сурьмой. Все эти соединения обладают кристаллической структурой цинковой обманки ZnS, подобной структуре алмаза. Несмотря на сходство с германием в области кристаллического строения, имеется существенное отличие в химической связи. Для образования четырех парных связей атома индия с другими атомами не-  [c.193]

Об образовании штриховых фигур как о виде травления еще нет окончательного мнения. Неясно, связана ли способность к образованию штриховых фигур с действующим на поверхность зерен травлением или она указывает преимущественно положение срезанных плоскостей пространственной решетки, как это предположил Клемм [68]. Химическим составом, родственной кристаллической структурой, соотношением напряжений (способностью к образованию разрывов и усадке), а также необходимой для образования штрихов толщиной поверхностной пленки, вероятно, можно объяснить образование различных известных в настоящее время штриховых фигур травления.  [c.263]

Эластомерами и пластиками являются главным образом органические материалы, состоящие из атомов углерода и водорода, связанных ковалентными связями, которые легко разрушаются при поглощении энергии излучения. В этом отношении они отличаются от металлов и керамических материалов, которые характеризуются кристаллической структурой, обычно не содержат ковалентных связей и в меньшей степени изменяют свои свойства под действием облучения. Следовательно, радиационная стойкость эластомеров и пластиков ниже, чем у металлов и керамических материалов. Все виды излучений вызывают в полимерах химические изменения, в результате которых разрушаются имеющиеся и образуются новые связи. Поэтому большинство радиационных эффектов в этих материалах необратимо пне может быть устранено обработкой после облучения.  [c.49]

Значение фототока зависит от нескольких факторов. Одним из важнейших факторов является рекомбинация носителей заряда. Интенсивность рекомбинации, за счет которой уменьшается число зарядов, участвующих в фототоке, является наряду с прочим функцией толщины диодной матрицы и регулярности ее кристаллической структуры. Дефекты кристаллической решетки, границы зерен, дислокации и т. п., приводящие к разрыву химических связей, служат активными центрами рекомбинации.  [c.100]

Кристаллические структуры чистых металлов (а также многих металлических сплавов— твердых растворов) имеют атомный характер и узлы решетки Бравэ представляют центры атомов (точнее, положительных ионов) — частиц, имеющих сферическую симметрию. Исходя из принципа плотной шаровой упаковки, действующего в случае ионной и металлической химической связи, определяется атомный (металлический) радиус как половина расстояния между центрами соприкасающихся атомов (ионов) (табл. 5.4). Простой расчет позволяет оценить коэффициент заполнения, т. е. долю (в процентах) объема решетки кристалла, занятого атомами или ионами (см. табл. 5.3).  [c.98]

Так же как в случае наводороживания при катодной поляризации, проницаемость стали для диффундирующего водорода, образующегося в процессе коррозии стали, зависит от химического состава стали, ее структурного состояния, степени механической деформации, наличия внутренних напряжений, дефектов кристаллической структуры металла. Эти вопросы рассмотрены в разделах 2.6—2.9. Количество абсорбированного водорода при коррозии должно быть связано с вышеперечисленными факторами в основном таким же образом, как и при катодной поляризации. Однако здесь возможны и отклонения, обусловленные неравномерным растворением выходящих на поверхность стального образца зерен и межзеренных прослоек, включений примесей и т. д. Исследованию влияния указанных факторов на способность стали абсорбировать водород, выделяющийся при коррозии, посвящено очень немного работ. Исследователи предпочитали изучать действие этих факторов при наложении на образцы катодной поляризации от внешнего источника тока, что объясняется рядом причин 1) при коррозии стали происходит одновременно диффузия водорода внутрь образца и удаление его поверхностных слоев, уже насыщенных водородом (согласно [323], наводороживание стали уменьшает ее коррозионную стойкость, т. е. облегчает переход ионов железа в раствор), 2) образующиеся, при коррозии микрощели по границам зерен и т. д. искажают результаты эксперимента, 3) результаты искажают также переходящие из стали в раствор примеси, среди которых особенно опасны элементы-стимуляторы наводороживания.  [c.116]


В аспекте электронного строения и теории химических связей сделан анализ кристаллической структуры, физических и прочностных свойств переходных металлов, представляющих основу наиболее жаропрочных сплавов. Рассмотрено электронно-кристаллическое строение и термодинамические характеристики тугоплавких соединений, определяющие их выбор в качестве дисперсионно-упрочняющих фаз.  [c.2]

Многие химические и физические свойства вещества, включая кристаллическую структуру, определяются его электронным строением. Определение электронной структуры вещества и ее связи с кристаллическим строением имеет первостепенное значение для раскрытия природы сил связи между атомами. Блюмберг и др. [12] определили смещение магнитных резонансных частот ядер атомов V и X в ряде соединений типа V3X. Это смещение известно под названием сдвига Найта и дает сведения о волновых функциях электронов проводимости. В частности, этот сдвиг  [c.245]

Создание условий для образования химических связей в материале шва при сварке линейных полимеров с ориентированной и/или кристаллической структурой термопластов с высокой вязкостью расплава термопластов, склонных при нагреве к образованию пространственной структуры, а также разнородных несовместимых ПМ Использование химической активности полимера при сварке неплавких ПМ Регулирование степени ориентации полимера в зоне шва при сварке в расплаве ориентированных или склонных к ориентации ПМ Управление морфологией кристаллизующегося полимера в зоне шва при сварке в расплаве  [c.350]

Радиационная стойкость структур неорганических соединений зависит от химического состава материала, т. е. от сечения взаимодействия с излучением его компонентов. Очень важную роль играют также тип кристаллической структуры, плотность упаковки, тип химической связи в облучаемом материале.  [c.319]

Высокое химическое сродство алюминия с железом обусловливает образование в контакте сталей с жидким алюминием прослойки интерметаллида РеаЛЬ, имеющего характерную особенность роста в сторону железа (рис. 28, в), что связано с большим дефектом его кристаллической структуры, способствующим ускоренной диффузии алюминия через эту фазу [21]. Торможение роста этого интерметаллида в контакте стали с жидким алюминием может быть достигнуто путем легирования последнего кремнием [194] или германием. Однако применение припоев систем А1 — 51 не предотвращает образования интерметаллидных прослоек в паяных швах в соединениях со сталью (рис. 28, а и б) и тем более не предотвращает роста таких прослоек при работе паяных соединений в условиях повышенных температур < 400° С), что со временем может вызвать разрушение изделий.  [c.55]

Изложенное выше дает основание полагать, что и при окислении основными факторами, определяющими скорость процесса, являются харайхеристики пористости и совершенства кристаллической структуры. Влияние кристаллической структуры на химическую активность углеродных материалов неоднократно обсуждалось в литературе [127]. Однако связь энергии активации реакции углерода с га-  [c.48]

Рассмотренные выше данные о влиянии кристаллической структуры и химического состава стали на ее проницаемость для водорода получены для образцов в виде стальных мембран (раздел 1.3.1). Однако этот метод эксперимента никоим образом не характеризует количество поглощенного (окклюдированного) металлом водорода. Способность металла поглощать водород зависит от ряда факторов 1) плотности упаковки а сомов в кристаллической решетке металла (чем выше плотность упаковки, тем выше ее энергетический уровень и тем больше водорода в виде протонов может быть связано в решетке) 2) количества дефектов структуры решетки, наличия в ней коллекторов для накодления молекулярного водорода 3) величины зерна и ширины межзеренных прослоек 4) вида и количества легирующих элементов, формы, в которой они присутствуют з С1шаве.  [c.83]

Падение твердости при пагреве связано с нарушением межатомных связей в инструментальном материале. Восстановление таких связей при охлаждении ведет к образованию вторичной твердости на уровне твердости до нагрева. Сопротивление термическим ударам обусловлено достаточной пластичностью и малым термическим расширением инструментального материала, препятствуюш,ими развитию внутренних третттин концентраторов напряжений. Диффузионная стойкость связана с особенностями кристаллической структуры и химического строения инструментального материала, препятствующими перемещениям атомов, придающих ему твердость, в обрабатываемый материал. Окалиностойкость есть неспособность инструментального материала окисляться при пагреве.  [c.130]

Металлические связи образуют структуры путем взаимодействия положительных ионов решетки (атомных остатков) и делока-лизированных, обобществленных электронов. Эти связи являются гомеополярными. Они по существу не относятся к химическим, и понятие металлические связи можно считать качественным, так как металлы не имеют молекулярного строения, а их атомы соединяются в кристаллические образования. Этот вид связи и обусловливает высокую прочность, пластичность и электропроводность металлов. Энергия связи — около Ю Дж/моль. Прочная металлическая связь наблюдается при образовании интер-металлидов и некоторых твердых растворов. Одна из ее особенностей — отсутствие насыщения, определяемого валентностью соответствующих атомов.  [c.10]

Под действием ионизирующих излучений (ИИ) могут происходить необратимые изменения структуры диэлектрика, которые называют радиолизом. В полимерах радиолиз приводит к структурированию-образованию связей между молекулами, а также к деструкции — разрушению молекул. В результате изменяются физико-химиче-ские свойства полимеров (температура п тавления кристаллических полимеров, термопластичность, химическая стойкость, растворимость), механические свойства (разрушающее напряжение, модуль упругости, хрупкость) электрические свойства (электрическая прочность, удельное объемное и поверхностное сопротивление). Радиолиз керамических диэлектриков происходит в результате поглощения значительно больших доз ИИ. В процессе действия ИИ контролируются изменения прежде всего механических свойств диэлектрика. Во многих случаях необратимые изменения механических свойств определяют изменения электрических свойств—электрической прочности и электрического сопротивления диэлектрика.  [c.192]


Электроотрицательность. Отличительная особенность металлов — способность отдавать электрон другим атомам, например неметаллам. Она характеризуется ионизационным потенциалом и электроотрицатель-ностью (ЭО). Первая величина характеризует химическое взаимодействие металла, вторая — в некоторой мере и физическое поведение. Наименьшие значения ЭО у щелочных металлов, минимум — у франция. Наибольшие —у галогенов, максимум — у фтора. В общем имеется некоторая связь между ЭО и пластичностью. Высокопластнчные щелочные металлы имеют ЭО 0,3—0,6, у малопластичных сурьмы и висмута ЭО равно 1,4—1,5. Однако имеются исключения низкие значения ЭО (0,6) у стронция и бария не согласуются с недостаточной пластичностью этих металлов кобальт и никель имеют одинаковые значения ЭО (1,2), но пластичность их различна. Однако низкая пластичность стронция и бария получена при испытании литых образцов, содержащих только 99— 99,9 % основного металла кристаллические структуры кобальта и никеля различны, чистота кобальта недостаточно высока.  [c.193]

На рис. 1, а и б, видны частицы окисп железа, отделенные от металла вместе с покрытиями из окиси алюминия и двуокиси циркония. На рис. 2 видна граница между частицами окиси железа и окиси алюминия. Сравнительно резкое очертание этой границы может свидетельствовать об отсутствии химического взаимодействия между материалом покрытия и подложно . Как видно из рис. 2, на поверхности скола частиц из окиси алюминия наблюдаются, так называемые, речные узоры. Каждая из линий, составляющих речной узор, связана с различием уровней отдельных частей поверхности скола, обусловленным тем фактом, что трещина скола, вместо того, чтобы распространяться по одной кристаллографической плоскости, была разбита дефектами кристаллической структуры на отдельные части.  [c.243]

Проблема создания материалов с особыми механическими, физическими, химическими свойствами не может быть решена без изучения взаимодействия между элементами, в частности, между переходными металлами, которые являются основными компонентами современных материалов. Большой интерес представляет способность металлов образовывать при взаимодействии соединения — металлиды, которые образуют особый класс неорганических соединений. Они обладают различными, часто очень сложными, кристаллическими структурами, различными типами химической связи  [c.167]

В стекле атомы расположены более беспорядочно по отношению друг к другу, чем в поликристалличе-ских металлах. Оно обладает жесткостью твердых кристаллических тел, но не имеет правильной кристаллической структуры. Изучение стекол обнаруживает микронеоднородности их структуры. В стекле нет полного хаоса и в то же врегля нет решетки, которая сопутствует кристаллическим веществам. Существует несколько гипотез строения стекла. Так, ионная теория предполагает ионный тип связей в стекле, в то время как полимерная теория исходит из преимущественно ковалентного характера химических связей. Ученые ищут концепцию, пригодную для всех видов стекла. Что же касается механизма деформации сдвига, то в стекле он диффузионный, в отличие от реальных кристаллов, где он дислокационный.  [c.96]

КРИСТАЛЛЫ валентные (атомные) содержат в узлах кристаллической решетки нейтральные атомы (С, Ge, Те и др.), между которыми осуществляется гомеополярная связь, обусловленная квантово-механическим взаимодействием глобулярные представляют собой частный случай молекулярных кристаллов и имеют вид клубка полимеров жидкие обладают свойствами как жидкости (текучестью), так и твердого кристалла (анизотропией свойств) внутри малых объемов идеальные не имеют дефектов структуры иопные обладают гетерополярной связью между правильно чередующимися в узлах кристаллической решетки положительными и отрицательными ионами квантовые характеризуются большой амплитудой нулевых колебаний атомов, сравнимой с межатомным расстоянием металлические образуются благодаря специфической химической связи, возникающей между ионами кристаллической решетки и электронным газом (Си, А1 и др.) молекулярные (Лг, СН , парафин и др.) формируются силами Ван-дер-Вальса, главным образом дисперсионными нитевидные вытянуты в одном направлении во много раз больше, чем в остальных оптические [активные поворачивают плоскость поляризации света вокруг падающего линейно поляризованного луча анизотропные обладают двойным лучепреломлением, состоящим в том, что луч света, падающий на поверхность кристалла, раздваивается в нем на два преломленных луча двуосные имеют две оптические оси, вдоль которых свет не испытывает двойного лучепреломления одноосные (имеющие одну оптическую ось отрицательные, в которых скорость обыкновенного светового луча меньше, чем скорость распространения необыкновенного луча положительные, в которых скорость распространения обьпсновенного светового луча больше, чем скорость распространения необыкновенного луча))] КРИСТАЛЛИЗАЦИЯ— образование кристаллов из паров, растворов, расплавов веществ, находящихся в твердом состоянии в процессе электролиза и при химических реакциях  [c.244]

Электронное строение и типы связей элементов периодической системы - ключ к пониманию структуры и свойств простых и сложных веществ, образованных этими элементами Два или более атомов располагаются друг около друга так, как это энергетически выгодно. Это справедливо независимо от того, сильно или слабо связана группа атомов, содержит эта фуппа лишь несколько или 10 атомов, является расположение атомов упорядоченным (как в кристалле) или неупорядоченным (как в жидкости). Группа атомов устойчива тогда и только тогда, когда энергия атомов, расположенных вместе, ниже, чем у отдельных атомов. Единственной физической причиной конкретной кристаллической структуры любого элемента и его модификаций является перекрытие валентных и подвалентных оболочек его атомов, приводящее к образованшо определенных межатомных связей. Число протяженность и симметрия орбиталей атомов данного конкретного элемента полностью определяют число, длин , ориентиров и энергию межатомных связей, образующихся в результате перекрытия этих орбита-лей, а следовательно, размещение атомов в гфостранстве, т е. кристал-лическ то структуру, основные физико-химические свойства элемента.  [c.30]

Химическая связь между адсорбированным кислородом и металлом имеет ионный характер. Электроны металла притягиваются к атомам кислорода. Последние превращаются в отрицательные частицы О2. Пока на поверхности имеется только монослой кислорода, образование оксида как новой фазы не происходит. Оксид будет сформирован в том случае, когда взаимное расположение катионов металла и анионов 0 будет отвечать структуре кристаллической решетки оксида. Существует мнение, что переход от хемосорбиро-ванного слоя кислорода к оксиду происходит легче, если существует кристаллохимическое соответствие между решетками металла и оксида и расстояние между ионами металла в оксиде и в решетке металла близки.  [c.41]

Компоненты некоторых сплавов при кристаллизации могут входить в химическую связь, образуя химическое соединение. Например железо с углеродом образуют химическое соединен Feg — карбид железа (цементит) медь с магнием — u2Mg магний со свинцом — Mg2Pb и т. д. Химическое соединение, как и твердый раствор, обладает однородной структурой. Кристаллическая решетка его включает атомы обоих компонентов. Однако в кристаллической решетке химического соединения в отличие от твер-  [c.48]

Согласно этим взглядам фактически работающее сечение материала, пропорциональное п, на 5—6 порядков меньше сечения образца. В настоящее время экспериментально доказано наличие напряженного молекулярного каркаса и неоднородностей напряженных связей в сечении для ориентированных кристаллических полимеров [8, с. 277]. Это открывает заманчивую перспективу увеличения прочности сетчатых полимеров (резин, пластмасс) путем создания равнонапряженных структур с одинаковой прочностью химических связей.  [c.116]


Чем больше атомов в молекуле вещества, тем, вообще говоря, больший объем занимает элементарная ячейка, образующаяся при его кристаллизации, и тем больше периоды кристаллической структуры. Их увеличению дополнительно способствует цепное строение молекул. Другим условием образования длиннопериодичной структуры является наличие слабой химической связи в определенных направлениях кристаллической решетки (например, слабое взаимодействие между молекулярными слоями).  [c.303]

В главе 4 рассматриваются твердые растворы ниоба-та бария и стронция. Монокристаллы этих соединений обладают самыми высокими электрооптическими коэффициентами. Технология получения этих кристаллов также связана с особенностями кристаллической структуры и слагающих элементов. Приводятся физико-химические данные, фазовые диаграммы, высокотемпературные фазовые переходы, технология выращивания и мокодомениза-  [c.9]

Пентапласт стоек к большинству органических растворителей, слабым и сильным щелочам, слабым и некоторым сильным кислотам на него действуют только сильные окисляющие кислоты, такие, как азотная и дымящая серная [32]. При этом воздействие агрессивных сред значительно меньше влияет на изменение механических свойств пентапласта, чем на изменение свойств фторопласта-3. Пентапласт более стоек, чем полипропилен, к концентрированным минеральным кислотам (30%-ной хромовой и 60%-ной серной) и органическим кислотам (75%-ной уксусной) и особенно к органическим растворителям кетонам, хлорсодержащим и ароматическим углеводородам. Такая повышенная химическая стойкость пентапласта обусловлена его строением — прочностью связи хлорметильных групп с углеродом основной цепи и компактностью его кристаллической структуры. Удачное сочетание физико-механических свойств с повышенной химической стойкостью выгодно отличает пентапласт от других термопластичных материалов. Пленки пентапласта практически непроницаемы для кислорода и азота по сравнению с полиэтиленом они менее газопроницаемы для паров воды и двуокиси углерода,  [c.169]

У актиноидов происходит заполнение внутренней бДоболочки, которая располагается под остовной б5 6р -оболочкой. Главное отличие актиноидов от лантаноидов заключается в близости уровней 5/ и Ы, вследствие чего электроны легко переходят с внутреннего уровня 5/ на внешний Ы уровень и принимают участие в химической связи. Этому отвечают высшие валентные состояния Th, Ра , U , Np , Pu , m , Вк , f , No , Lr , требующие размещения актиноидов по П—VIII группам [55,641, а также переход всех валентных электронов в электронный газ в металлическом тории, протактинии и уране. У актиноидов, вследствие коллективизации внешних Ы-и 75 -электронов, а также перехода одного — двух электронов с внутреннего уровня 5/ на внешний 6rf, остовной оболочкой оказывается 6р -обрлочка. В невозбужденном состоянии она имеет сферическую симметрию, что обусловливает плотные кристаллические упаковки а-актиния, а-тория и тяжелых актиноидов (б -Ри а-, Р-Ат а-, р-Ст а-Вк, f). При повышении температуры вследствие усиления тепловых колебаний происходит возбуждение, расщепление и перекрывание орбиталей 6р -оболочек и появляется ОЦК структура у Р-тория, протактиния и высокотемпературных модификаций 7-урана, у-нептуния и е-плутония. Тяжелые актиноиды — америций, кюрий, берклий, калифорний — имеют двойную плотную гексагональную структуру и ГЦК, как а, Р-лантан и другие лантаноиды (а, р, у-Се а-Рг, a-Nd, a-Pm, a-Yb).  [c.35]

Таким образом, приложение к металлам квантовохимических представлений об образовании валентных связей с учетом симметрии S, р-, of-волновых функций внешних электронов, локализованных на остовах, и коллективизированных валентных электронов позволяют в металлах, как и в других твердых телах, подойти к пониманию их кристаллических структур с общих позиций теории химических связей [65—69, 55, 57, 58].  [c.37]

К рассмотрению вопроса о двояком распределении активатора мы вернемся в главе седьмой. Здесь только отметим, что возможностью образования комплексов в дефектных местах решетки нельзя нренебречь. В подобных местах, где жесткие связи кристаллической структуры нарушены, могут в большей степени проявиться химические связи, способствующие образованию комплексов. Имеющиеся в настоящее время данные, однако, не позволяют утверждать, что свойства кристаллофосфора определяются только подобными комплексами.  [c.153]

Существование различных видов скрытого фотографического изображения предполагали в разное время различные авторы, причем наиболее распространенным являлось мнение, что скрытое изображение состоит из маленьких частичек металлического серебра внутри или на поверхности микрокристаллов галоидного серебра. Однако некоторые авторы полагали, что скрытое изображение представляет разрыв в двойном ионном слое, окружающем серебряногалоидный микрокристалл или даже местное изменение кристаллической структуры [1, 2]. Сейчас хорошо известно, что скрытое изображение может находиться как на поверхности, так и внутри микрокристалла. То, что скрытое изображение, находящееся внутри микрокристаллов, состоит из металлического серебра, с достаточной убедительностью доказывается его устойчивостью к столь энергичному воздействию, как превращение бромистого серебра микрокристалла в йодистое серебро или фиксирование, предшествующее так называемому физическому проявлению. Нам неизвестно, способно ли поверхностное скрытое изображение также противостоять таким воздействиям. В этой связи физическое проявление представляет особый интерес, так как оно заключается в осаждении серебра из раствора на любой подходящий зародыш, в отличие от химического проявления, которое восстанавливает эмульсионный микрокристалл в результате реакции, идущей главным образом внутри или на поверхности твердого кристалла. Поэтому физическое проявление может рассматриваться как средство для обнаружения того вида скрытого изображения, который представляет собой металлические серебряные зародыши, так как трудно представить себе, что, например, разрыв в двойном слое может играть роль зародыша для осаждения металлического серебра или может сохраняться после разрушения микрокристалла фиксажем. Конечно, можно предположить, что внутреннее скрытое изображение действительно состоит из серебра, а поверхностное скрытое изображение имеет другой состав. В связи с этим следует отметить, что именно поверхностное скрытое изображение почти полностью ответственно за нормальное химическое проявление [3].  [c.157]

Неорганические полимеры отличаются от органических и элементоорганических полимеров высокоупорядоченной кристаллической структурой. Они имеют большой модуль упругости и повышенную стойкость к термоокислительной деструкции. Их температуры плавления и размягчения, а также термостойкость во много раз выше, чем органических и элементоорганических полимеров. Недостатком пространственных неорганических полимеров является их большая хрупкость. Особенностью многих неорганических полимеров является отсутствие у них эластичности и растворимости, характерных для большинства органических и элементоорганических полимеров. Поэтому для исследования неорганических полимеров, как правило, не применимы методы, связанные с их растворением. Для изучения неорганических полимеров применяют химические и физико-химические методы исследования дифференциально-термический анализ, тер-Могравиметрию, рентгеноскопию, инфракрасную спектроскопию и др. Эти методы позволяют определять температуру, при которой происходят процессы, связанные с деструкцией, превращением и химическим взаимодействием исходных компонентов, и на основании этого выбирать оптимальные условия проведения реакций в твердой фазе. С помощью этих методов удается также проследить ход реакций взаимодействия между связующими и наполнителями, установить состав и структуру вновь образовавшихся соединений, а также ответить на основной вопрос — при каких температурах могут работать новые химические соединения.  [c.36]

Для изучения атомнокристаллической структуры твердых тел широко применяют рентгенографические методы исследования, позволяющие устанавливать связь между химическим составом вещества, его кристаллической структурой и свойствами.  [c.107]

В заключение отметим еще один основной тип связи, действующий между молекулами, уже образованными ковалентными или ионными связями, и приводящий к кристаллическим структурам с отчетливо сохраняемой химической тождественностью молекул. Примером такой связи служит решетка 8102. Эта молекулярная или, как её называют, ван-дер-ваальсовская связь возникает между нейтральными атомами, находящимися в такой непосредственной близости, что их электронные облака подчинены дальнодействующим силам взаимодействия орбитных электронов соответственно обоих облаков. Возникающие при резонансе электронов соответствующих орбит поляризационные силы понижают общий потенциал пропорционально 1/г и ведут, таким образом, к притяжению атомов или молекул. Эти ван-дер-ваальсовские силы относительно слабы по сравнению с другими силами связи, но все же значительны в некоторых к ристалличе-ских решетках и особенно в случае поверхностных явлений. В газообразном состоянии фтор и хлор связаны ковалентными связями, в твердом же состоянии они удерживаются ван-дер-вааль-совокими силами в виде кристаллической решетки. Невысокая точка кипения галоидов (Рг — 187° С С г — 34,6° С Вгг — 58,78° С) является признаком их слабой связи. Когда ковалентные связи атомов с высокой валентностью распределяются между двумя соседними атомами, образуются очень большие молекулы, которые могут принять форму либо спиральных структур, как в случае селена и серы, либо двухмерных решеток, как у сурьмы. Четырехвалентные атомы ведут к образованию трехмерных решеток, как, например, в случае алмаза, кремния, германия и олова, где каждый атом расположен в центре тетраэдра, а координационное число равно четырем.  [c.159]



Смотреть страницы где упоминается термин Кристаллическая структура , химическая связь : [c.10]    [c.258]    [c.22]    [c.37]    [c.188]    [c.304]    [c.113]    [c.421]    [c.41]    [c.184]    [c.82]    [c.262]   
Смотреть главы в:

Селениды  -> Кристаллическая структура , химическая связь



ПОИСК



411—416 — Структура кристаллическая

Кристаллические

Связь химическая

Структура связующего



© 2025 Mash-xxl.info Реклама на сайте