Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические свойства диэлектриков

Механические свойства диэлектриков. Они характеризуют способность диэлектрика выдерживать внешние статические и динамические нагрузки без недопустимых изменений первоначальных размеров и формы. Статическая нагрузка на материал при эксплуатации или испытаниях плавно возрастает с обусловленной скоростью, динамическая воздействует мгновенно, рывком, ударом, быстро и -меняясь по величине и (или) направлению.  [c.184]

ФИЗИКО-ХИМИЧЕСКИЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА ДИЭЛЕКТРИКОВ  [c.73]


МЕХАНИЧЕСКИЕ СВОЙСТВА ДИЭЛЕКТРИКОВ  [c.78]

Физико-механические свойства диэлектриков, применяемых для каркасов, приведены в табл. 2 и 3.  [c.848]

Механические свойства диэлектриков  [c.125]

Механические свойства диэлектриков ] 19  [c.119]

Из механических свойств фторопласта-4 следует отметить низкий коэффициент трения и ударную прочность при очень низких температурах. Полностью фторированные полимеры относятся к категории отличных диэлектриков с низкими диэлектрическими потерями, которые практически не меняются при изменении температуры и частоты.  [c.430]

Важнейшим выводом теории Максвелла явилось положение, согласно которому скорость распространения электромагнитного поля в вакууме равняется отношению электромагнитных и электростатических единиц силы тока второй, не менее важный вывод гласил, что показатель преломления электромагнитных волн равняется У ер, где е — диэлектрическая, ар — магнитная проницаемости среды. Таким образом, скорость распространения электромагнитной волны, в частности света, оказалась связанной с константами вещества, в котором распространяется свет. Эти константы первоначально вводились в уравнения Максвелла формально и имели чисто феноменологический характер. Напомним, что в механической (упругой) теории никакой связи между оптическими характеристиками среды (скорость света) и ее механическими свойствами (упругость, плотность) установлено не было. Известно, что для целого ряда газообразных и жидких диэлектриков соотношение Максвелла п = Уе х е (ибо р. близко к 1) выполняется достаточно хорошо  [c.539]

Подавляющее большинство окружающих нас веществ представляет собой неупорядоченные системы, в которых отсутствует дальний порядок, но в то же время существует ближний порядок в расположении атомов. Такие вещества называют аморфными, некристаллическими или неупорядоченными. Среди неупорядоченных веществ имеются такие, которые обладают механическими свойствами, сходными с механическими свойствами кристаллических твердых тел. Некристаллические вещества, в которых коэффициент сдвиговой вязкости превышает 10 —10 H /м , обычно называют аморфными твердыми телами (типичное значение вязкости для жидкости вблизи температуры плавления 10 H /м ). Многочисленные экспериментальные исследования показали, что аморфные твердые тела, подобно кристаллическим, могут быть диэлектриками, полупроводниками и металлами.  [c.353]


Важное для практики значение имеют и неэлектрические свойства диэлектриков механические, тепловые  [c.544]

Механические, термические и физико-химические свойства диэлектриков  [c.184]

Какими параметрами характеризуются механические, термические и физико-химические свойства диэлектриков  [c.192]

В книге излагаются основы физики явлений, происходящих в диэлектрических, полупроводниковых и магнитных материалах. Приводится классификация материалов н описываются их электрические, физико-химические и механические свойства. Рассматривается технология производства электротехнических материалов. В седьмое издание включены сведения о новых материалах сверхпроводниках, полупроводниках и активных диэлектриках, расширены сведения о качестве материалов.  [c.2]

Природ ный графит представляет собой одну из модификаций чистого углерода слоистой структуры (рис. 7-29) с больш ой анизотропией как электрических, так и механических свойств. Основные свойства графита (а также пиролитического углерода, см. ниже) приведены в табл. 7-11. Следует отметить, что чистый углерод в модификации алмаза представляет собой диэлектрик с весьма высоким удельным сопротивлением.  [c.227]

Процессы сушки получили широкое распространение в электротехнической промышленности. При удалении влаги из электротехнических, материалов — диэлектриков, помимо механических свойств, резко изменяются их электрофизические характеристики удельное сопротивление, диэлектрическая проницаемость и др.  [c.207]

Фторопласт-4 (фторлон-4) политетрафторэтилен (— F — Fj—) является аморфно-кристаллическим поли.мером. До температуры 250 °С скорость кристаллизации мала и не влияет на его механические свойства, поэтому длительно эксплуатировать фторопласт-4 можно до температуры 250 °С. Разрушение материала происходит при температуре выше 4i5° . Аморфная фаза находится в высокоэластическом состоянии, что придает фторопласту-4 относительную мягкость. При весьма низких температурах (до —269 °С) пластик не охрупчивается. Фторопласт-4 стоек к действию растворителей, кислот, щелочей, окислителей. Практически он разрушается только под действием расплавленных щелочных металлов и элементарного фтора, кроме того, пластик не смачивается водой. Политетрафторэтилен малоустойчив к облучению. Это наиболее высококачественный диэлектрик. Фторопласт-4 обладает очень низким коэффициентом трения (/ = 0,04), который не зависит от температуры (до 327 °С когда начинает плавиться кристаллическая фаза).  [c.453]

В рабочем интервале температур механические свойства резин изменяются эластичность резин уменьшается при приближении к ст и при температурах выше 100 °С из-за термического разрушения и старения. При кратковременном нагреве до 120 °С (чтобы исключить старение) прочность всех без исключения резин уменьшается вдвое. Теплостойкими являются резины на основе этиленпропиленовых, кремнийорганических и фторкаучуков (до 300-400 °С вместо 150 °С для обычных резин). Резина является диэлектриком.  [c.403]

Электрические свойства диэлектрика определяют область его применения при этом принимаются во внимание механические свойства материала, его химическая стойкость и другие параметры.  [c.599]

Прочность диэлектриков и особенности их механических свойств являются дополнительным критерием выбора материалов. Керамика, стекло и ситаллы — наиболее прочные диэлектрики. Характерной особенностью этих материалов является хрупкость их прочность на сжатие в несколько раз больше прочности на изгиб. Предел прочности на изгиб равен 30 - 300 МПа, а у ряда ситаллов возрастает до 500 МПа. Для хрупких диэлектриков исключительно важно учитывать тепловое расширение, особенно когда речь идет о работе в условиях быстрых смен температуры или о соединении диэлектриков с металлами. Температурный коэффициент линейного расширения керамики и тугоплавкого стекла не превышает 8 у легкоплавких стекол он равен (15. .. 30) 10 °С , а у ситаллов в зависимости от химического состава  [c.604]

Неполярная термопластичная пластмасса. Обладает высокой химической стойкостью, низким коэффициентом трения. Является высококачественным диэлектриком. Характеризуется трудностью переработки, хладотекучестью. Физико-механические свойства р = 2190. .. 2200 кг/м а.= 14. .. 35 МПа  [c.197]


В книге освещены вопросы физики диэлектриков, физико-механических свойств диэлектриков и их поведение в эксплуатации. Рассмотрены газообразные и жидкие диэлектрики, твердые электроизоляционные материалы проводниковые, полупроводникоаь(е и /магнитные материалы.  [c.2]

Под действием ионизирующих излучений (ИИ) могут происходить необратимые изменения структуры диэлектрика, которые называют радиолизом. В полимерах радиолиз приводит к структурированию-образованию связей между молекулами, а также к деструкции — разрушению молекул. В результате изменяются физико-химиче-ские свойства полимеров (температура п тавления кристаллических полимеров, термопластичность, химическая стойкость, растворимость), механические свойства (разрушающее напряжение, модуль упругости, хрупкость) электрические свойства (электрическая прочность, удельное объемное и поверхностное сопротивление). Радиолиз керамических диэлектриков происходит в результате поглощения значительно больших доз ИИ. В процессе действия ИИ контролируются изменения прежде всего механических свойств диэлектрика. Во многих случаях необратимые изменения механических свойств определяют изменения электрических свойств—электрической прочности и электрического сопротивления диэлектрика.  [c.192]

Какие физико-хим1 ческие и механические свойства диэлектриков необходимо учитывать при эксплуатации материалов  [c.88]

Механические свойства диэлектриков определяют следующие характеристики разрушающее напряжение при статическом растяжении разрушающее напряжение при статическом сжатии разрушающее напряжение при статическом изгибе твердость ударная вязкость сопротивление раскалывания стойкость к надрыву (для гибких материалов) гибкость по числу двойных перегибов пластоэластические свойства. Механические характеристики диэлектриков определяют соответствующие ГОСТы.  [c.163]

Электропроводность проводников и диэлектриков. Удельное электрическое сопротивление. Потери моыдаости в диэлектриках. Понятие о тангенсе угла диэлектрических потерь. Оценка состояния изоляции по tg 5. Физико-механические свойства диэлектриков.  [c.319]

Необходимо иметь в виду, что электроизоляционные, механические, тепловые, влажностные и другие свойства диэлектриков заметно изменяются в зависимости от технологии получения и обработки материалов, наличия примесей, условий испытания и т.п. Поэтому численные значения параметров материалов во многих случаях следует рассмат]эивать лишь как ориентировочные.  [c.127]

Нефть — диэлектрик, ее проводимость равна Ю —10 Ом- -см . Нефть с малым содержанием воды, находящейся в высокодисперсионном состоянии, имеет проводимость 10 —10- Ом -см-. При увеличении содержания воды проводимость нефтеводяной эмульсии возрастает. Нарушение устойчивости водонефтяной эмульсии приводит к разделению ее на две несмешивающиеся жидкости. Время, необходимое для разделения эмульсии на две несмешивающиеся жидкости, характеризует ее агрегативную устойчивость, которая достигается за счет эмульгаторов — веществ, способных стабилизировать капельки воды в нефти, с образованием на границе раздела фаз адсорбционно-сольватных пленок, улучшающих структурно-механические свойства системы. Стабилизаторами нефтяных эмульсий типа В/М являются вещества, находящиеся в нефти в коллоидно-дисперсном состоянии (асфальтены, нафтеновые, асфальтеновые и жирные кислоты, смолы, парафины, церезины). С повышением обводненности нефти увеличивается общая площадь границы раздела вода — нефть (при условии сохранения дисперсности частиц) и уменьшается относительное содержание стабилизатора в системе, что приводит к расслоению эмульсии с выделением воды из газожидкостной смеси.  [c.122]

Особого внимания заслуживает поведение материалов при длительном воздействии повышенной температуры, способной вызвать в, материале необратимые изменения — старение, сопровождающееся ухудшением свойств изоляции. Органические диэлектрики, как правило, сильней подвержены тепловому старению, чем неорганические. В разных веществах при разных температурах интенсивность термоокислительной деструкции, являющейся основным механизмом теплового старения, протекает пр-разному. В первой стадии теплового старения за счет удаления остатков влаги и растворителей, улетучивания некоторых низкомолекулярных сйставных частей и других процессов элеетричес-кие свойства твердых диэлектриков могут даже улучшаться без существенного снижения механических свойств. В дальнейшем термоокислптельная деструкция, сопровождающаяся в органических диэлектриках выделением разных про-  [c.108]

Так как металлокерамические магниты содержат поры, то их магнитные свойства уступают литым материалам. Как правило, пористость (3—5 %) уменьшает остаточную индукцию и магнитную энергию IFniax (на 10—20 %) и практически не влияет на коэрцитивную силу Яд. Механические свойства их выше, чем литых магнитов. Металлопластические магниты изготовлять проще, чем металлокерамические, но свойства их хуже. Металлопластические магниты получают из порошка сплавов ЮНД или ЮНДК, смешанного с порошком диэлектрика (например, фенолоформальдегид-ной смолой). Процесс изготовления магнитов подобен процессу прессования пластмасс и заключается в прессовании под давлением 500 МПа, нагреве заготовок до 120—180 °С для полимеризации диэлектрика.  [c.108]

Каким образом связаны механические, термические и физико-химнчес-кие параметры с электрическими свойствами диэлектриков  [c.192]

Серебро —белый, блестяш,ий металл, стойкий против окисления при нормальной температуре. Серебро имеет меньшее удельное сопротивление р (при нормальной температуре), чем какой бы то ни было другой металл (см. табл. 7-1). Механические свойства серебряной проволоки Ор около 200 МПа, МП примерно 50 %. Такую проволоку используют для изготовления контактов, рассчитанных на небольшие токи. Серебро применяют также для непосредственного нанесения на диэлектрики в качестве электродов в производстве керамических и слюдяных конденсаторов. Для этой цели используют метод вжигания или испарения в вакууме. Недостатком серебра является его склонность к миграции внутрь диэлектрика, на который нанесено серебро, в условиях высокой влажности, а также при высоких температурах окружающей среды. Химическая стойкость серебра по сравнению с другими благородными металлами пониженная.  [c.215]


Всесторонний анализ различных энергетических процессов приводит к заключению, что для превращения видов энергии необходимо выполнить по крайней мере два условия 1) соблюсти должный уровень концентрации энергии и 2) подобрать рабочее тело определенных свойств. Например, из-за низкой концентрации нельзя превратить тепло дымовых газов печей в ядерную энергию— получить ядерные топлива. Из за неподходяп их свойств диэлектрика, сколько бы ни пересекать им силовые шнки магнитного поля, механическая -нергия этого движения не превратится в электрическую — для этого нужен проводник  [c.136]

На механических свойствах полимерных композитов с минеральными наполнителями особенно отрицательно сказывается скопление воды на поверхности раздела. Вода может выщелачивать растворимые вещества с поверхности раздела, что вызывает коррозию наполнителя под напряжением или растрескивание смолы из-за осмотического давления при этом смола работает как диэлектрик при электрохимической коррозии металлов. Полярные функциональные группы полимеров (аминные гидроксильные или карбоксильные) наиболее прочно связываются с поверхностью наполнителя и эффективно препятствуют скоплению молекул воды на поверхности раздела. Полиолефины и другие неполярные полимеры почти не способны конкурировать с водой на поверхности наполнителя, хотя в массе эти полимеры наиболее стойки к растворению или химическому взаимодействию с водой. Роль силановых аппретов заключается не в том, что они препятствуют достижению молекулами воды границы раздела полимер — наполнитель, а в том, что они, распределяясь на поверхности наполнителя, мешают молекулам воды образовывать пленки или капли. Такое представление об адгезии полимера к наполнителю предполагает, что ухудшение адгезии всегда предшествует коррозии. Любая полимерная пленка, имеющая адгезию к минеральному наполнителю и препятствующая скоплению воды на поверхности раздела, предотвращает коррозию поверхности минерального наполнителя под действием воды.  [c.210]

Механические свойства Г. т. (реакции на внеш. механич. воздействия—сжатие, растяжение, изгиб, удар и г. д.) определяются силами связи между его структурными частицами. Многообразие згих сил приводит к разнообразию механич. свойств одни Т. т. пластичны, другие хрупки. Обычно металлы 6ojiee и.иаС1ичны, чем диэлектрики. Напр., деформация Си при комнатной темц-ре в момент  [c.45]

Стекла, как правило, изотропны, по механическим свойствам характеризуются упругостью (напряжение пропорционально деформации) с последутощим хрупки.м разрушением при комнатной температуре и вязким течением (напряжение пропорционально скорости деформации) при повышенных те.мпературах по оптическим свойствам обычно прозрачные (для видимого ИК-, УФ-, рентгеновского и у-излучения) как правило, диамагнитны по электрическим свойствам большинство стекол - диэлектрики (силикатные стекла), но есть и полупроводники и др.  [c.50]

Металлоштастические магниты изготовляют смешением металличе-екш порошков, например, из сплавов Fe—А1—N1—Со с диэлектриком, фор муют прессованием, и обжигают пра температуре 120—180 °С. Механические свойства металлопластическня магнитов в несколько раз выше, чем У литых, магнитные свойства пониженные.  [c.543]


Смотреть страницы где упоминается термин Механические свойства диэлектриков : [c.2]    [c.135]    [c.80]    [c.294]    [c.5]   
Смотреть главы в:

Электротехнические материалы  -> Механические свойства диэлектриков

Материалы в радиоэлектронике  -> Механические свойства диэлектриков

Электротехнические материалы Издание 3  -> Механические свойства диэлектриков

Электротехнические материалы Издание 5  -> Механические свойства диэлектриков



ПОИСК



Влияние излучения на электрические свойства высокополимерных материа34-3. Изменения химической природы и механических свойств высокополимерных диэлектриков под действием излучения

Диэлектрик

Диэлектрики свойства

Механические, тепловые и химические свойства диэлектриков

Механические, термические и физико-химические свойства диэлектриков

ФИЗИКО-ХИМИЧЕСКИЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА ДИЭЛЕКТРИКОВ

Физико-механические и химические свойства диэлектриков и их поведение в эксплуатации

Физико-механические и химические ч свойства диэлектриков и их поведение в эксплуатадии



© 2025 Mash-xxl.info Реклама на сайте