Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимодействие фотонов с молекулами

ВЗАИМОДЕЙСТВИЕ ФОТОНОВ С МОЛЕКУЛАМИ  [c.183]

При взаимодействии фотонов с молекулой газа коэффициент поглощения может быть записан в форме Лоренца [42]  [c.236]

Исследуем непрямые переходы в кристаллах с одной молекулой Б элементарной ячейке при слабой связи экситонов с фононами молекулярного кристалла в случае, когда можно пренебречь многофононными процессами. Оператор взаимодействия фотонов с молекулами кристалла можно записать в узельном представлении  [c.378]


Во многих случаях можно рассматривать взаимодействие фотонов с атомами и молекулами вещества, как если бы последние были свободны или по крайней мере изолированы. Однако в тех случаях, когда квантово-оптические явления происходят в твердых телах, необходимо принимать во внимание электронные и другие коллективные движения в кристалле. Этим коллективным движениям сопоставляют своеобразные кванты , называемые квазичастицами или элементарными возбуждениями. Кристалл уподобляют газу таких квазичастиц. Квантово-оптические явления в твердых телах рассматривают, исходя из взаимодействия фотонов с указанными квазичастицами.  [c.129]

Фотоэффект как один из процессов взаимодействия фотона с электроном. В основе фотоэффекта (как внешнего, так и внутреннего) лежит элементарный акт поглощения фотона электроном, в результате чего энергия электрона увеличивается. Правда, этот акт не исчерпывает процесса фотоэффекта. Рассматриваемый процесс включает в себя также поведение электрона после того, как произошло поглощение фотона. Существенно, что поглотить фотон электрон может лишь при условии, что первоначально он находится в связанном состоянии (в атоме, молекуле, твердом теле). Поглощение фотона свободным электроном запрещено законами сохранения энергии и импульса.  [c.156]

С процессами взаимодействия света с веществом сопоставляют определенные квантовые переходы частиц вещества (атомов, ионов, молекул). Эти переходы называют оптическими, так как каждый из них сопровождается рождением или уничтожением, а возможно, одновременно и рождением, и уничтожением некоторого числа фотонов. Наряду с оптическими существуют также неоптические переходы они происходят без участия фотонов, например при столкновениях частиц.  [c.219]

Основными формами дискретной материи являются вещественные и полевые частицы. К первым пока можно отнести молекулу, атом, протон, нейтрон, электрон из частиц образуются макросистемы — тела каждой из этих частиц соответствует античастица, время жизни которой в среде частиц ничтожно, поскольку происходит аннигиляция — взаимодействие античастицы с частицей с образованием новых вещественных или (и) полевых частиц. Ко вторым относятся фотон, нейтрино, гравитон, мезОн (вещественная частица, являющаяся квантом ядерного поля). Другие частицы — элементарные , виртуальные — настолько неустойчивы (правда, время жизни я-мезонов тоже составляет 10 с), что пока энергетического значения не имеют.  [c.35]

Фотоны с энергией ниже 5 эВ не могут взаимодействовать с веществом таким образом, как это описано выше. Значение энергии этих фотонов, как правило, не превышает энергии связи электронов в атомах. Однако фотоны низких энергий могут вызывать атомные или молекулярные возбуждения. При этом происходит полное поглощение энергии фотона атомом или молекулой, которые переходят в возбужденное состояние. Возбужденные атомы или молекулы, возвращаясь в основное состояние, излучают один или более фотонов, которые в свою очередь могут точно таким же путем поглощаться соседними атомами или молекулами. В конечном счете энергия первичного фотона преобразуется в тепловые колебания частиц вещества, поглощающего излучение. Энергия микроволнового излучения недостаточна для ионизации вещества. Воздействуя на биологическую ткань, оно способно только вызывать ее нагрев. Хотя высказывалось много соображений относительно других видов воздействия микроволнового излучения на живую ткань, ни одно из них не получило убедительного экспериментального подтверждения (в том числе и эффекты, связанные с низкими уровнями облучения).  [c.338]


Так как при возбуждении, а также и при измерении часто требуется резонансное взаимодействие между светом и объектом воздействия, то необходимо иметь возможность выбора подходящей длины волны импульсного излучения. Излучение многих лазеров, таких, как рубиновые, на стекле с неодимом и на ЛИГ Nd, газовые, может перестраиваться лишь в узком диапазоне длин волн. Напротив, благодаря широкой линии люминесценции соответствующих органических молекул излучение лазеров на красителях может перестраиваться в более широком диапазоне длин волн, примерно в пределах 100 нм. Выбор нескольких красителей и их последовательное применение в качестве активной среды позволяют перекрыть весь видимый диапазон длин волн (см. гл. 2). Однако для возбуждения электронных, колебательных и вращательных уровней различных веществ требуется излучение в диапазоне от ультрафиолетовой до инфракрасной частей спектральной области. Для этого используются разнообразные методы преобразования частоты, применение которых позволяет преобразовать импульс со средней частотой 0)0 в подобный импульс со средней частотой ш. Специальный метод преобразования частоты уже был описан в связи с рассмотрением генерации импульсов посредством синхронной накачки лазера на красителе. Изменение частоты первичного излучения происходит при этом в результате двухфотонного процесса, разделяющегося на следующие этапы после поглощения фотона с высокой энергией излучается фотон с малой энергией. Разность энергий фотонов выделяется в виде тепла и передается люминесцирующим молекулам. При этом преобразовании одновременно существенно уменьшается длительность импульсов.  [c.272]

Эту задачу в 1927 г. решил Лондон, использовав разработанную им для газов теорию дисперсионных взаимодействий. Физические предпосылки теории заключаются в следующем. В системе газовых молекул всегда возможно спонтанное возбуждение /-й молекулы и переход ее в возбужденное состояние с энергией Е,. Обратный переход в стационарное нижнее состояние Е сопровождается испусканием фотона с энергией Ео, = Е,- Ео- Этот фотон поглощает-  [c.210]

В четвертом порядке теории возмущения (5.2.7) будет определять вторые и четвертые моменты поля с учетом двухфотонных эффектов— нелинейного поглощения падающего поля и спонтанного излучения пар фотонов. С другой стороны, формула (5.3.23) позволяет выразить вероятность двухфотонных переходов через собственные частоты и моменты переходов молекул. Мы здесь выберем третий метод описания — феноменологический, который позволит нам обобщить закон Кирхгофа на слабо нелинейные среды в двухуровневом приближении. Метод основан на подстановке в двухуровневое кинетическое уравнение ( 4.5) эффективного гамильтониана взаимодействия, учитывающего только интересующий нас элементарный двухфотонный процесс. Из полученного кинетического уравнения для произвольной наблюдаемой поля / мы найдем в первом порядке приращение Д , получаемое в результате взаимодействия с веществом. Выбирая затем в качестве / первые, вторые и четвертые моменты, мы выразим приращения этих моментов через коэффициенты кинетического уравнения. В результате мы получим приближенный ОЗК, выражающий вероятность двухфотонного излучения через кубическую МР. Из полученных соотношений следует заранее очевидный вывод об одновременности излучения фотонов в парах (в отличие от ТИ линейного приближения). Далее, двухфотонный ОЗК будет использован для оценки скорости совпадений по коэффициенту двухфотонного поглощения. Наконец, мы найдем связь между третьим моментом ТИ и квадратичной МР.  [c.164]

Общей, или классической, акустикой называют раздел физики, имеющий дело с упругими колебаниями и волнами в классической сплои ной среде в случае, когда длины волн значительно больше расстояний между атомами и молекулами. Другими словами, общая акустика — это часть механики сплошных сред (гидродинамики и теории упругости), изучающая колебательные и волновые процессы. Если же среда характеризуется не только механическими, но и другими физическими свойствами (например, наличием пьезоэлектричества, фотоупругости, магнитных свойств и т. д.), то процесс распространения звука в такой среде может существенно зависеть от этих свойств. Для описания акустических явлений в этом случае уже недостаточно традиционных представлений механики сплошных сред. Необходимо использовать более общие модели, основанные на рассмотрении соответствующих явлений на макро- и микроуровнях. Это относится к взаимодействиям звука с тепловыми упругими волнами в кристаллах — фононами, взаимодействиям со светом — фотонами (акустооптика), со свободными носителями заряда — электронами (акустоэлектроника), с возбуждениями в магнитоупорядоченных кристаллах — магнонами. Когда длина волны становится сравнимой с параметром решетки кристалла, возникают специфические явления, которые также не могут быть описаны в рамках классической механики сплошных сред.  [c.6]


Фотоэлектрическим эффектом (фотоэффектом) ) называется явление взаимодействия света с веществом, в результате которого энергия фотонов передается электронам вещества. Для твердых и жидких тел различается внешний и внутренний фотоэффект (У.5.4.3°). При внешнем фотоэффекте поглощение фотонов сопровождается вылетом электронов за пределы тела. При внутреннем фотоэффекте электроны, вырванные нз атомов, молекул или ионов, остаются внутри вещества, но изменяются энергии электронов. В газах фотоэффект состоит в явлении фотоионизации — вырывании электронов из атомов и молекул газа под действием света (П1.3.3.2°).  [c.410]

Солнечная радиация является основным источником энергии, приходящей на Землю, и, следовательно, играет важную роль в формировании структуры и состава ее атмосферы. Характер взаимодействия радиации с составляющими атмосферы существенно зависит от длины волны. Коротковолновая радиация X < 200 нм, или 0,2 мкм, что соответствует энергиям фотонов, превышающим 6 эВ) способна вызывать диссоциацию, а в случае малых длин волн (Я < 100 нм) и ионизацию основных составляющих атмосферы азота (N2) и кислорода (О2). Озон может диссоциировать при длинах волн короче 320 нм При увеличении длины волны взаимодействие ослабляется и в инфракрасной (ИК) области (Я, > 760 нм) основным результатом взаимодействия является колебательное возбуждение молекул. Из-за взаимодействия с атмосферой спектр солнечной радиации, проходящей через атмосферу, изменяется (рис. 1.1). Верхняя кривая, приведенная на указанном рисунке, дает представление о спектральной освещенности вне атмосферы. Как можно заметить, максимум кривой приходится на 470 нм [1]. Около 20% энергии солнечной радиации переносится на длинах волн короче 470 нм и 44 % —в видимом диапазоне 400—760 нм.  [c.9]

История его открытия началась еще в конце прошлого века, когда Планк получил формулу, описываюш,ую распределение энергии в спектре электромагнитного поля, которое находится в равновесии со стенками полости, когда температура этих стенок поддерживается постоянной. Постановка задачи о равновесном излучении основывалась на известных фактах что электромагнитное поле обладает энергией и подчиняется законам термодинамики. Следовательно, используя методы термодинамики, можно вычислить, как должна распределяться энергия по частотам, чтобы ее поток, передаваемый электромагнитным полем стенкам полости, был бы в точности компенсирован обратимым потоком энергии от стенок к электромагнитному полю. Однако эта задача оказалась намного труднее, чем казалось вначале . Решение пришло только тогда, когда Планк и Эйнштейн поняли, что изучение и поглощение света происходит не непрерывно, а порциями — квантами. Эта гипотеза привела к знаменитой формуле Планка, описывающей спектр, который находится в равновесии с резервуаром при некоторой температуре Т. Таким образом, стало возможным приписывать температуру полю излучения. Более того, Эйнштейн показал, что поле излучения можно рассматривать как газ, состоящий из фотонов — квантов. Равновесие между таким газом и стенками могло наступить лишь тогда, когда вероятность поглощения кванта с какой-либо частотой находилась бы в определенном соотношении с вероятностью его излучения стенкой. (Кванты взаимодействуют друг с другом очень слабо, поэтому в отличие от газа, в котором тепловое равновесие устанавливается благодаря столкновению молекул между собой, в поле излучения основную роль играет взаимодействие со стенками.) Надо было найти такое выражение для вероятностей, чтобы они привели к формуле Планка.  [c.135]

АВТОР. Действительно, здесь свет взаимодействует с веществом молекулы и атомы поглощают и испускают фотоны. Однако, строго говоря, во всех оптических явлениях в той или иной форме происходит взаимодействие света и вещества, будь то отражение, преломление или рассеяние света. И это еще один аргумент в пользу важности изучения природы света.  [c.13]

НИИ облучению потоком фотонов слабой интенсивности, но с частотой, равной частоте перехода с уровня т на уровень п, то в результате взаимодействия с частицами ансамбля произойдет их лавинное размножение. Действительно, взаимодействие какого-либо фотона частоты с возбужденной частицей приведет к вынужденному излучению фотона той же частоты, распространяющегося в том же направлении. В результате акта взаимодействия образуются уже два фотона, которые, распространяясь дальше и встретив соответственно две возбужденные частицы, образуют еще два фотона. Четыре фотона затем превратятся в восемь, шестнадцать и т. д. В таком размножении будут участвовать все фотоны, образующие поток электромагнитной волны, которой был освещен ансамбль. В результате на выходе из области, где был расположен ансамбль рабочих молекул, интенсивность пучка света будет значительно превосходить интенсивность на входе [20, 119].  [c.9]

Химическая реакция может быть осуществлена либо ирн фотодиссоциации молекул, либо при электрическом разряде в газе, либо при взаимодействии соответствующих молекул и атомов и их соединений. В соответствии с этим и химические лазеры могут быть подразделены на три группы. Во всех случаях энергия, высвобожденная при химических реакциях, в той или другой мере превращается в энергию лазерного луча. Процесс, протекающий в лазерах первой группы, может быть представлен, например, следующим образом. Фотон, энергия которого hv больше энергии межатомной связи, взаимодействует с двухатомной молекулой Л 1 2. Энергия фотона затрачивается на диссоциацию молекулы на два атома и причем один из атомов оказывается в возбужденном состоянии  [c.66]

Фотоэлектрическим эффектом называется передача энергии фотонов электронам вещества. При взаимодействии электромагнитного излучения с конденсированными средами электроны могут либо вылетать в окружающую среду внешний фотоэффект), либо оставаться в теле с переходом на более высокий энергетический уровень (внутренний фотоэффект). При воздействии света на газ может происходить фотоионизация — отрыв электронов от атомов и молекул.  [c.227]


В предыдущей главе мы рассмотрели принципиальные вопросы, возникающие при изучении единственного атома, взаимодействующего с монохроматической световой волной и излучающего спонтанно и вынужденно фотоны. При этом остался в тени важный для практики вопрос о том, каким образом может быть приготовлена система, состоящая только из одного атома. Если атомы исследуемого вещества находятся в газовой фазе, то задача уединения единственного атома является решаемой, но достаточно сложной технической проблемой. Однако исследования в газовой фазе становятся даже в принципе невозможными для сложных органических молекул, так как многие из них уже при небольшом нагревании, предшествующем испарению, распадаются. Поэтому в последние несколько лет успешно развиваются методы исследования единичных молекул, внедренных в твердые матрицы, охлажденные до гелиевых и более низких температур [18-20]. В этом случае перед нами стоит проблема исследования поглощения и излучения света единственным примесным центром. Однако оптические электроны примесной молекулы или атома взаимодействуют не только с электромагнитным полем, но и с колебаниями атомов матрицы (фононами). Это электрон-фононное взаимодействие приводит к рождению и уничтожению фононов в процессе оптического перехода в примеси. Оно актуально даже при сверхнизких температурах, потому что процессы рождения фононов имеют место даже при абсолютном нуле. Поэтому в теорию, изложенную в предыдущей главе, необходимо включить взаимодействие оптических электронов примесного центра с фононами. Фононы и другие низкочастотные возбуждения твердой матрицы рассматриваются в данной главе.  [c.53]

Выведенные выше формулы для амплитуды сигнала фотонного эха описывают амплитуду свечения образца, проинтегрированную по всем направлениям распространения света. Пока мы не затрагивали вопрос об анизотропии свечения эхо-сигнала. Воспользуемся формулой (15.97), которая описывает поляризацию, наведенную в образце светом трех лазерных импульсов. При ее выводе мы использовали оптические уравнения Блоха, электрическое поле в которых бралось в точке г = 0. Поле стоячей волны описывается формулами (1.33) 1.35) причем при выводе сначала уравнений для амплитуд вероятности, а потом и уравнений Блоха мы полагали, что рассматриваемая молекула находится в пучности электрического поля, т. е. os фк = os кг = 1. Поскольку размер образца обычно заметно превышает длину световой волны, очевидно, что будет существовать огромное число примесных молекул, не попавших в пучность стоячего электрического поля. Их взаимодействие с электрическим полем будет слабее. Чтобы учесть это обстоятельство, мы должны принять во внимание косинусоидальный характер распределения электрического поля по образцу. Это легко сделать во всех выведенных ранее формулах с помощью замен  [c.223]

Очевидно, что располагая вектором pi (t) мы можем вычислить только эффекты первого порядка по взаимодействию со светом, например, затухание наведенной поляризации. Располагая вектором P2 t), мы можем вычислить изменение населенности молекул в первом неисчезающем приближении по взаимодействию со светом, а с помощью вектора рз 1) — в первом неисчезающем приближении амплитуду фотонного эха, так как фотонное эхо является эффектом третьего порядка по взаимодействию со светом. Поэтому, если подставить разложение (16.15) в формулу (16.10) для наведенной поляризации, то часть наведенной поляризации  [c.228]

Для наглядного представления процесса переноса энергии в объеме излучающего газа удобно рассматривать излучение как поток частиц — фотонов, движущихся по прямолинейным траекториям со скоростью света с и обладающих энергией /IV. Часть фотонов захватывается (поглощается) молекулами газа, что приводит к повышению энергии газа, т.е. его нагреванию. При этом молекулы газа поглощают лишь те фотоны, частоты которых отвечают полосам поглощения в спектре газа. Фотоны других частот (энергий) пролетают газовый объем без взаимодействия с веществом. Одновременно с процессом поглощения энергии происходит обратный процесс — излучение энергии объемом газа. Вследствие хаотического теплового движения газовых молекул, их вращения, колебаний атомов отдельные многоатомные молекулы газа получают избыток энергии по сравнению со средним его уровнем. Избыток энергии может затем самопроизвольно излучаться в форме рож-  [c.256]

Получение и применение ультракоротких световых импульсов основано на поглощении и излучении фотонов атомными системами (например, атомами или молекулами). Протекание этих процессов во времени определяется как свойствами непосредственно участвующих частиц, так и их взаимодействием между собой и с другими атомными системами. Последние обычно описываются суммарно как термостат.  [c.15]

Кроме однофотонных переходов существуют двух-, трех- и многофотонные переходы, характерной особенностью которых является одновременность поглощения или испускания двух и более фотонов. Например, при двухфотонных переходах (см. рис. 1.17, а, б) при каждом элементарном акте взаимодействия фотонов с молекулой одновременно поглощаются или излучаются два фотона с энергией Лсуь сумма энергий которых совпадает с энергией возбуждения молекулы, т. е. кс =кс - -Нс .  [c.45]

Столкновения фотонов с молекулами могут быть как упругими, так и неупругими. В первом случае энергия молекулы и частота Тд фотона не меняются, что соответствует рэлеевскому рассеянию. При неупругом столкновении энергия фотона упеличивается или уменьшается на величину колебательного кванта /IV/. Если свет вступает во взаимодействие с молекулой, не находящейся в состоянии колебания, то он отдает молекуле соответствующую часть энергии и превращается в излучение меньшей частоты ( красный спутник ) в соответствии с уравнением  [c.603]

Отметим, что неупругое рассеяние фотонов было предсказано теоретически (А. Смекаль, 1923 г.) для их взаимодействия именно с атомами. Однако экспериментально оно было обнаружено намного позднее комбинационного рассеяния молекулами. Комбинационное рассеяние ионами было обнаружено в 1963 г., а комбинационное рассеяние атомами—в 1967 г.  [c.607]

Как только плазма возникла, в ней начинает поглощаться лазерное излучение (обычно этому соответствуют температуры 5000-4- 12000 К). Поглощение в плазме обусловлено обратным тормозным эффектом, при котором свободный электрон погло щает фотон. Электрон переходит в более высокое энергетическое состояние непрерывного спектра. Для сохранения количества движения этот процесс должен происходить в поле иона,, атома или молекулы. На начальных стадиях пробоя число ионов мало, а температура газа остается низкой. Взаимодействие электрона с излучением происходит в этом случае в поле нейтрального атома или молекулы. Коэффициент поглощения связанный с обратным тормозным эффектом в системе, состоящей из нейтрального атома и свободного электрона, вычислен, например, для нейтрального водорода (в единицах СГС) [29]  [c.103]

Амплитудный анализатор АИ-100 с датчиком УСД-1, оснащенный кристаллом NaJ(Ta), имеет разрешающую способность по Y-линии s 9%. Основные процессы взаимодействия Y-квантов с веществом — фотоэлектрические поглощения, комптоновское рассеивание и образование пар. Результатом взаимодействия излучения с веществом сцинтиллятора является возбуждение атомов молекул, которые, возвращаясь в нормальное состояние, испускают фотоны с частотой в области спектральной чувствительности фотокатода фотоумножителя ФЭУ-13. Кристалл йодистого натрия, активизированный таллием, обладает световым выходом относительно большой плотности, содержит атомы йода с большим атомпы. весом (Z = 53), хорошо себя зарекомендовал в спектрометрии рентгеновского и у-излучения. Так как интенсивность световой вспышки линейно связана с энергией, возбужденной 7-квантом в кристалле, на аноде фотоумножителя ФЭУ-13 появляется пропорциональный ей импульс тока, регистрируемый набором статистически распределенных импульсных счетчиков.  [c.57]


Представленная в гл. 1 теория двухфотонных корреляторов, с помощью которых в реальных экспериментах исследуется поглощение света одиночным атомом, не учитывала такого взаимодействия. В данной главе мы устраним этот недостаток теории, что позволит нам вывести уравнения для матрицы плотности полной системы, состоящей из электронньгх возбуждений молекул, фононов, туннелонов и фотонов поперечного электромагнитного поля. Будет показано, какие приближения необходимо сделать, чтобы из системы для полной матрицы плотности получились оптические уравнения Блоха, широко используемые на практике. С помощью этих уравнений мы найдем выражение для полного двухфотонного коррелятора, который итывает взаимодействие хромофора с фононами и туннелонами, т. е. выведем формулы, которые можно использовать при обработке реальных экспериментальных данных.  [c.85]

Комбинационное рассеяние можно рассматривать как неупругое взаимодействие фотона йсо с молекулой, находящейся на начальном энергетическом уровне (рис. 6.3). В результате взаимодействия появляется фотон йозр с меньшей (или большей) энергией, а молекула оказывается соответственно на более высоком (или низком) энергетическом уровне /. Разность энергий / — / может быть энергией электронного, колебательного или вращательного возбуждения молекулы. В схеме, приведенной на рис. 6.3, промежуточное состояние системы = + в процессе рассеяния рассматривают как виртуальный уровень. Если виртуальный уровень совпадает с одним из энергетических уровней молекулы, то такая ситуация характеризуется как резонансное комбинационное рассеяние .  [c.155]

Особенности Д. а. и м. в сравнении с дифракцией др. волновых объектов (электронов, нейтронов, фотонов и т. д.) связаны с наличием собств. линейного размера дифрагирующих частиц А, с их малой кинетич. энергией, существованием внутр. электронных (а для молекул ещё и колебательных и вращательных) степеней свободы, возможностью пространственной ориентации молекулы относительно дифракц. решётки, спе-цифич. особенностей потенциала взаимодействия.  [c.663]

Хорошо описывая распространение света в материальных средах, волновая О. не смогла удовлетворительно объяснить процессы его испускания и поглощения. Исследование этих процессов (фотоэффекта, фотохим. превращений молекул, закономерностей спектров оптических и пр.) и общие термодинамич. соображения о взаимодействии эл.-магн. поля с веществом привели к выводу, что элементарная система (атом, молекула) может испускать или поглощать энергию эл.-магн. поля лишь дискретными иорциями (квантами), пропорциональными частоте излучения V (см. Излучение). Поэтому световому эл.-магн. полю сопоставляется поток квантов света — фотонов, распространяющихся в вакууме со скоростью света. В простейшем случае энергия, теряемая или приобретаемая изолиров. квантовой системой при взаимодействии с оптич. излучением, равна энергии фотона йv, а в более сложном— сумме или разности энергий иеск. фотонов (см. Многофотонные процессы). Эффекты, в к-рых при взаимодействии света и вещества проявляются квантовые свойства элементарных систем, рассматриваются квантовой оптикой методами, развитыми в квантовой механике и квантовой электродинамике.  [c.419]

Молекулярная О, а. обнаруживается во всех агрегатных состояниях и растворах. У оптически активных молекул отсутствуют центр и плоскости симметрии (хиральные молекулы). Такая молекула может быть смоделирована двумя взаимодействующими осцилляторами, расположенными взаимно перпендикулярно, расстояние между к-рыми а сравнимо с Я (т. е. фазы поля в местах осцилляторов различны), а скорость передачи взаимодействия сравнима со скоростью распространения света в среде. Такая система, очевидно, будет по-разному реагировать на правую и левую круговую поляризацию волн, вследствие чего их скорости станут различными. В квантовой электродинамике оптич. вращение рассматривается как двухфотонный процесс рассеяния света на молекуле с роглощением одного фотона и испусканием другого, причём возникает интерференция двух участвующих в процессе фотонных мод. При этом должны учитываться все возможные в молекуле виды взаимодействия электрич. и магн. дипольных и квадру-польных моментов, наведённых проходящей световой волной.  [c.426]

С помощью Э. в. осуществляется взаимодействие положительно заряженных ядер и отрицательно заряженных электронов в атомах и молекулах. Тем самым Э. в. определяет (на основе законов квантовой механики) возможность устойчивого состояния таких микроскопич. систем. Размеры и существ, образом определяются величиной электрич. заряда электрона (так, Бора радиус равен где —масса электрона). Эл.-магн. природу имеют фотоэффект, явления ионизации и возбуждения атомов среды быстро движущимися заряж. частицами, процессы расщепления ядер фотонами, реакции фоторождеиия мезонов, радиационные (с испусканием фотонов) распады элементарных частиц и возбуждённых состояний ядер, упругое и неупругое рассеяние электронов и мюонов на ядерных мишенях и т. п.  [c.540]

Эл.-маги, взаимодействие характеризуется как взаимодействие, в основе к-рого лежит связь с эл.-магн. полем. Процессы, обусловленные им, менее интенсивны, чем процессы сильного взаимодействия, а порождаемая им связь Э. ч. заметно слабее. Эл.-магн. взаимодействие, в частности, ответственно за процессы излучения фотонов, за связь атомных электронов с ядрами и связь атомов в молекулах.  [c.598]

Все методы основаны на взаимодействии первичного излучения (теплового, рентгеновского, электрического и магнитного поля, потока фотонов, электройов, ионов, нейтральных атомов и молекул и т. д.) с веществом и анализе рассеянного или (чаще) вторичного излучения [1]. Таких методов известно несколько десятков, однако наибольшее распространение получили четыре Оже-электронная спектро-  [c.151]


Смотреть страницы где упоминается термин Взаимодействие фотонов с молекулами : [c.256]    [c.274]    [c.6]    [c.422]    [c.206]    [c.817]    [c.329]    [c.243]    [c.359]    [c.196]    [c.116]    [c.151]   
Смотреть главы в:

Физическая теория газовой динамики  -> Взаимодействие фотонов с молекулами



ПОИСК



Фотонное эхо

Фотоны



© 2025 Mash-xxl.info Реклама на сайте