Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы интеграла Коши

IV. Методы интеграла Коша  [c.104]

IV. МЕТОДЫ ИНТЕГРАЛА КОШИ 105  [c.105]

IV. МЕТОДЫ ИНТЕГРАЛА КОШИ 107  [c.107]

IV. МЕТОДЫ ИНТЕГРАЛА КОШИ Ю9  [c.109]

IV. МЕТОДЫ ИНТЕГРАЛА КОШИ 111  [c.111]

IV. МЕТОДЫ ИНТЕГРАЛА КОШИ 115  [c.115]

IV. МЕТОДЫ ИНТЕГРАЛА КОШИ 117  [c.117]

IV. МЕТОДЫ ИНТЕГРАЛА КОШИ Ц9  [c.119]

IV. МЕТОДЫ ИНТЕГРАЛА КОШИ 121  [c.121]

IV. МЕТОДЫ ИНТЕГРАЛА КОШИ 123  [c.123]

IV. МЕТОДЫ ИНТЕГРАЛА КОШИ 125  [c.125]

IV. МЕТОДЫ ИНТЕГРАЛА КОШИ 127  [c.127]

Основными методами, позволяющими рещать задачи плоской теории упругости для достаточно щирокого класса областей, являются метод конформного отображения и метод интеграла типа Коши. Совместное применение этих методов оказывается наиболее эффективным для односвязных областей.  [c.133]


Наиболее эффективные методы расчета решеток основаны на использовании методов теории функций комплексного переменного и, в частности, на применении основных представлений этих функций в виде интегралов и в виде рядов, являющихся, соответственно, обобщениями на решетчатые области интеграла Коши и ряда Лорана.  [c.34]

Все эти решения получаются не случайными частными приемами, а применением общего метода, основанного на выведенных автором свойствах интеграла Коши.  [c.9]

В плоской задаче широко и эффективно применяются методы теории функций комплексного переменного (конформное отображение, интеграл Коши и др.) [46, 53, 64]. Распространение компьютеров не обесценивает эти изощренные методы, но заставляет сместить акценты — громоздкие выкладки без особой необходимости становятся нерациональными. Выведем основные формулы с комплексным переменным в плоской задаче.  [c.95]

Для нахождения полного интеграла уравнения (57) мы воспользуемся методом характеристик Коши. Следуя этому методу, нужно прежде всего составить диференциальные уравнения для характеристик. Эти уравнения в общем виде пишутся следующим образом  [c.402]

Изложенный здесь метод получения интеграла обыкновенного неоднородного линейного дифференциального уравнения с постоянными коэффициентами называется методом начальных параметров. Подробнее об этом методе говорится в главе XII, где поясняется, что указанный метод есть не что иное, как метод Коши интегрирования дифференциальных уравнений, в которых правая часть (у нас нагрузка) на разных участках рассматриваемого промежутка имеет различные аналитические выражения.  [c.141]

Когда точки Р и Q совпадают, интегрирование в (6.9.1) должно выполняться специальным методом, поскольку в этом случае функции Тп (Р, Q) и Uji (Р, Q) сингулярны. Такие интегралы называются несобственными и вычисляются с помощью исключения из области интегрирования малого отрезка длиной 2е с центром в сингулярной точке и последующего нахождения пределов при е, стремящемся к нулю. Значение интеграла, вычисленное таким способом, называется главным значением Коши  [c.134]

В данной главе изложен метод сингулярных интегральных уравнений для решения основных граничных задач плоской теории упругости для многосвязных областей с отверстиями и разрезами произвольной формы при наличии угловых точек на граничных контурах, а также изучено поведение вблизи концов линии интегрирования интеграла типа Коши и некоторых других комплексных интегралов, плотности которых имеют особенности степенного характера.  [c.5]


Из-за различия ядер релаксации материалов слоев структура функциональной матрицы Г( ) такова, что разделение переменных в общем случае невозможно. В связи с этим для решения системы (9.16) воспользуемся одношаговым численным методом [102]. В указанной работе рассмотрена задача Коши для системы п линейных интегро-дифференциальных уравнений следующего вида  [c.499]

Перейдем теперь к изложению метода Кирхгоффа. Становясь на точку зрения теории обтекания с отрывом струй, мы будем считать поле скоростей непрерывным и потенциальным в области течения I. Точка разветвления А линии тока, прилегающей к передней части обтекаемого контура, должна тогда быть критической точкой, в которой скорость г == 0, иначе бы вектор скорости терпел разрыв непрерывности по направлению. В зоне застоя II, протягивающейся в бесконечность, скорость везде равна нулю и, следовательно, давление постоянно, если отсутствуют массовые силы, что мы и будем предполагать в дальнейшем. В таком случае линии тока Bfi и В2С можно рассматривать как свободные границы жидкости, и величина скорости течения на этих линиях должна в силу интеграла Бернулли-Коши оставаться постоянной и равной величине скорости потока в бесконечности w.  [c.322]

Методы теории вычетов могут быть использованы и для задач, в каком-то смысле обратных рассмотренным выше. Часто оказывается полезным выразить какую-либо функцию через контурный интеграл. При этом интегральное представление сложной функции может оказаться удобным для исследования, если подынтегральное выражение в контурном интеграле имеет простой вид и содержит элементарные функции. Кроме того, деформируя контур в соответствии с теоремой Коши, можно получить различные приближенные оценки для интегралов, например их асимптотические оценки. В частности, если функция задана рядом, то представление суммы ряда через контурный интеграл позволяет в некоторых случаях найти сумму ряда в конечном виде.  [c.550]

Теорема 13 установлена Якоби в 1837 г. Следует заметить, что обратная теорема о том, что решение уравнения с частными производными типа Гамильтона приводится к решению системы обыкновенных дифференциальных уравнений (дифференциальных уравнений характеристик), имеющей в рассматриваемом случае форму Гамильтона, высказана Пфаффом и Коши в развитие еще более ранних исследований Лагранжа и Монжа, еще до того как Гамильтон и Якоби начали заниматься вопросами динамики (Э. Уиттекер [57]). Наиболее эффективный прямой метод решения уравнения Гамильтона— Якоби — это метод разделения переменных полный интеграл есть сумма слагаемых, каждое из которых зависит только от одной из переменных Ж1,. .., ж , I.  [c.77]

Ответ на этот вопрос заключается в том, что для нахождения полного интеграла уравнения Гамильтона-Якоби не всегда необходимо применять метод Коши, и иногда полный интеграл можно найти более элементарными способами, при помощи какого-нибудь искусственного приема, а тогда интегрирование канонической системы, конечно, чрезвычайно облегчается.  [c.405]

Для решения задачи Коши — Пуассона суш ествует несколько методов. Самым простым из них является метод, основанный на применении интеграла Фурье. Этот метод мы и изложим.  [c.285]

В цлтированной выше работе А. А. Соколова указан метод применения теоремы Коши о числе корней аналитической функции в замкнутой области для решения задачи Гурвица путем непосредственного вычисления интеграла от логариц мической произв дной левой части уравнения по полуокружности, лежащей в правой полуплоскости изменения корней и указан прием определения радиуса этой полуокружности, вне ко юрой уравнение не может име1ь корней с положительной вещественной частью.  [c.129]

Большое разнообразие встречающихся в физике Н, у. м. ф. затрудняет развитие общих матем. методов их исследования. Лишь для сравнительно немногих Н. у. м. ф. доказаны теоремы существования и единственности, к таким относятся ур-ния Янга — Миллса, ур-ния Навье — Стокса в двумерном случае, ур-ния газовой динамики. Для ур-ний Навье — Стокса в трёхмерном случае теорема единственности решения задачи Коши до сих пор не доказана. Затруднена даже проблема классификации Н. у. м. ф. Часть их попадает под классич. разделение на эллиптич., гиперболич. и параболич. ур-ния, но значит, число важных Н. у. м. ф. (среди них Кортевега — де Фриса ур-ыие, Кадомцева — Петвиашвили ур-ние) не могут быть отнесены ни к одному из этих типов. Нек-рую классификацию Н. у. м. ф. можно осуществить на основе физ. соображений. Прежде всего это разделение на стационарные и ЭВО.ТЮЦ. ур-ния. Большинство стационарных ур-ний относится к эллиптич. типу. Среди эволюц. ур-ний, явно содержащих производные по времени, можно выделить консервативные Н. у. м. ф., сохраняющие интеграл энергии, и диссипативные Н. у. м. ф., описывающие открытые системы , обменивающиеся энергией с внешним миром . Одним из интересных достижений теории Н. у. м. ф. было обнаружение того факта, что консервативные Н. у. м. ф., как правило, являются гамильтоновыми системами, хотя явное введение кано-иич. переменных зачастую оказывается трудной задачей. Установлена гамильтонова природа большинства консервативных обобщений ур-ний Эйлера и даже системы ур-ний Власова, описывающих плазму без столкновений. Для гамильтоновых систем, близких к линейным, развиты методы теории возмущений, позволяющие учитывать нелинейные эффекты и производить статистич. описание решений. Все перечисленные выше универсальные Н. у. м. ф., за исключением Бюргерса ур-ния и Хохлова — Заболотской ур-ния, являются гамильтоновыми.  [c.315]


На первом этапе вычислений контур у деформируют в контур с теми же концами, проходящий через стационарные точки Zq ф-ции q z) 1точки, в к-рых 9 (г)=0]. Стационарная точка является седловой точкой поверхности и = и х, у) = Reg(z), г = х iy. Наиб, удобный путь интегрирования совнадает с линией, вдоль к-рой Im д(г) постоянна, а Reg(z) убывает быстрее всего перевальный контур, путь наибыстрейшего спуска), тогда вычисление интеграла сводится к интегрированию по вещественной переменной. Др, возможность — выбор линии с постоянной Reg(z), в этом случае П. м. переходит в метод стахщо-нарной фазы. Если при переходе к перевальному контуру встречаются особые точки ф-ции /(г), соответствующие вклады учитывают с помощью Коши теоремы. Если в рассматриваемой области q z) не имеет нулей, осн. вклад в интеграл даёт окрестность одного из концов контура интегрирования.  [c.556]

Систему трех обыкновенных линейных дифференциальных уравнений (7.5) можно решить на ЭВМ с помощью численных методов. Для решения задачи реализуем стандартную подпрограмму DLBVP [184], которая сводит решение краевой задачи к решению задачи Коши, где модифицированным предиктор-корректор методом Хэмминга четвертого порядка решают дополнительные задачи Коши и определяют перемещения Uz, 0, Ч " завершающей задачи Коши. Интеграл вычисляется по интегральной формуле Эрмита четвертого порядка. Выбираем начальный шаг интегрирования Ды=0,01 м и задаемся допустимой погрешностью вычислений е=МО-  [c.204]

Регуляризуем уравнение (II. 1) методом Карлемана — Векуа (см. [137], с. 194). Используя формулу обращения интеграла типа Коши (1.63) и условие (II.2), из (II. 1) получаем интегральное  [c.42]

Заметим, что в той или иной степени аналогичные ситуации возникали и раньше. Например, создание теории крыла большого уд шнения на базе сингулярных интегральных уравнений бьи[о бы невозможно без постулирования понятия rjtaBHoro знa [ ння интеграла в смысле Коши. Появление компьютеров стимулировало переход к дискретным манерам описания, то и другое потребовало новых методов организации вычисле1П1Й.  [c.435]

Впервые этот метод применил Г. В. Колосов Он показал, что интеграл бигармопического уравнения для функции напряжений, а также граничные условия в напряжениях или смещениях могут быть выражены через функции комплексного переменного. Ряд важных результатов получил Н. И. Мусхелишвили С помощью функций комплексного переменного можно легко получить решение плоской задачи теории упругости для внутренности круга. Если же задана некоторая односвязная область, отличная от круга, то в этом случае надо воспользоваться конформным отображением области на круг. Кроме того, использование интеграла тина Коши позволяет свести плоскую задачу теории упругости к интегральному уравнению Фредгольма второго рода, для решения которого существуют хорошо разработанные приближенные методы. В некоторых случаях (например, для  [c.252]

Методика численного решения. Рассмотрим методику итерационного численного решения системы уравнений (21), (23) и (31). Каждая итерация состоит из решения уравнения (21) для некоторого размера концевой области трещины с проверкой условий (23) и (31). При выполнении последних двух условий получаем размер концевой области трещины и величину критической внешней нагрузки в состоянии предельного равновесия. При увеличении длины трещины итерационный процесс повторяется. Основным этапом численной схемы является решение уравнения (21), которое также выполняется по итерационной схеме, подобной методу упругих решений, если закон деформирования связей является нелинейным. Уравнения (21) представляют собой систему нелинейных сингулярных интегро-дифференциальных уравнений с ядрами типа Коши. Для их решения используем коллокационную схему с кусочно-квадратичной аппроксимацией неизвестных функций.  [c.230]


Смотреть страницы где упоминается термин Методы интеграла Коши : [c.339]    [c.381]    [c.580]    [c.102]    [c.339]   
Смотреть главы в:

Классическая теория упругости  -> Методы интеграла Коши



ПОИСК



Коши интеграл

Коши)

Полный интеграл. Теорема Якоби. Метод разделения переменных. Переменные действие-угол. Метод характеристик. Метод Фока. Задача Коши. Классическая механика и квантовая механика. Уравнение Гамильтона-Якоби вр- представлении. Элементы гамильтоновой оптики Каноническая теория возмущений



© 2025 Mash-xxl.info Реклама на сайте