Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения Эйлера — Лагранжа

Дифференциальные уравнения Эйлера — Лагранжа для твердого тела.  [c.41]

Подобно тому, как уравнения движения классической механики являются дифференциальными уравнениями Эйлера—Лагранжа, соответствующими вариа-  [c.198]

Например, электромагнитная сила Лоренца, действующая на частицу при наличии электрического и магнитного полей, порождается именно подобной силовой функцией. Из дифференциальных уравнений Эйлера — Лагранжа (см. ниже, гл. И, п. 10) следует, что связь между силой и силовой функцией при этом задается уравнением  [c.53]


Это фундаментальное уравнение было открыто независимо Эйлером и Лагранжем и обычно называется дифференциальным уравнением Эйлера — Лагранжа. Заметим, что оно было выведено элементарными средствами из условия стационарности суммы, заменяющей данный определенный интеграл.  [c.76]

Резюме. Задача минимизации определенного интеграла, содержащего неизвестную функцию и ее производную, может быть сведена к элементарной задаче минимизации функции многих переменных. Для этого интеграл заменяется суммой, а производная — отношением приращений. Условия, при выполнении которых первая вариация обращается в нуль, принимают форму разностного уравнения, которое в пределе переходит в дифференциальное уравнение Эйлера — Лагранжа.  [c.76]

II. Дифференциальные уравнения Эйлера — Лагранжа 83  [c.83]

Дифференциальные уравнения Эйлера — Лагранжа в случае п степеней свободы. В механике приходится иметь дело с вариационными задачами следующего вида. Требуется найти стационарное значение определенного интеграла  [c.83]

Резюме. Если из условия стационарности определенного интеграла, содержащего не одну, а несколько неизвестных функций, требуется найти эти функции, то можно варьировать эти функции независимо друг от друга. Поэтому для каждой функции в отдельности можно написать дифференциальное уравнение Эйлера — Лагранжа. В результате получается система п дифференциальных уравнений второго порядка. Решение этой системы уравнений определяет п искомых функций, которые оказываются выраженными через независимую переменную (время t) и 2п констант интегрирования.  [c.85]

Можно исключить какие-то m переменных q , выразив их через остальные переменные, и уменьшить тем самым число степеней свободы до п — т после этого становятся применимыми дифференциальные уравнения Эйлера — Лагранжа. Однако исключение переменных может оказаться практически трудно выполнимым кроме того, связи между переменными могут быть даны в таком виде, который затрудняет разделение переменных на зависимые и независимые. В этих случаях хорошие результаты дает метод неопределенных множителей Лагранжа, описанный выше в п. 5.  [c.86]

Замечательное свойство вариационных задач заключается в том, что в них всегда автоматически возникает нужное число граничных условий. Эти граничные условия, не обусловливаемые имеющимися внешними обстоятельствами, следуют из сути вариационной задачи. Для наличия стационарного значения эти дополнительные граничные условия существенны в такой же степени, как и выполнение дифференциальных уравнений Эйлера — Лагранжа. Появление этих дополнительных условий связано с граничным членом в Ы. Наложенные извне (внешние) и естественные граничные условия, вместе взятые, обеспечивают единственность решения.  [c.93]


Дифференциальное уравнение Эйлера — Лагранжа в этом случае запишется, согласно (2.10.11), следующим образом  [c.94]

Задача 1. Применить дифференциальные уравнения Эйлера — Лагранжа к интегралу (3.4.14). Первое уравнение (связанное с переменной х) непосредственно интегрируется. Выразив из него X  [c.106]

Напомним также, что условие (П.16) эквивалентно известному дифференциальному уравнению Эйлера—Лагранжа, используемому при решении классических вариационных задач [40]. Если подынтегральная функция в (П.15) , явно зависит от х, у к производных (/<"), например, так  [c.219]

Известным методом были получены дифференциальные уравнения Эйлера—Остроградского и граничные условия для вариационного уравнения (3.39). Ввели множители Лагранжа и обозначили н т  [c.95]

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ЭЙЛЕРА-ЛАГРАНЖА  [c.369]

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ЭЙЛЕРА- ЛАГРАНЖА 371  [c.371]

Различные приближенные аналитические методы связаны с вариационными формулировками и основываются на том, что существует тесная связь между вариационными проблемами и соответствующими краевыми задачами, выражаемая дифференциальными уравнениями Эйлера — Лагранжа. Эта взаимосвязь имеет большое значение для теории (см. гл. 4). Для краевой задачи всегда можно сформулировать соответствующую вариационную задачу и искать затем ее решение. При этом были развиты численные методы, чтобы решать вариационную задачу, не применяя дифференциальных уравнений Эйлера — Лагранжа, а посредством так называемых прямых методов вариационного исчисления.  [c.129]

Итак, из (1), (5) и дифференциальных уравнений Эйлера-Лагранжа следует, что  [c.21]

Вариационная производная 26, 97 Вариационное дифференциальное уравнение Эйлера — Лагранжа 22  [c.152]

Для определения кинематических уравнений вращения твердого тела вокруг неподвижной точки требуется решение системы нелинейных дифференциальных уравнений Эйлера (17.5). Эта сложная математическая задача может быть аналитически доведена до конца лишь в немногих частных случаях, которыми занимались знаменитые математики Эйлер, Лагранж, Ковалевская и др. Мы в качестве примера рассмотрим наиболее простой случай вращения тела по инерции, т. е. при отсутствии моментов сил, приложенных к телу. Эта задача впервые была решена Эйлером и носит его имя.  [c.159]

Из этого следует, что экстремум интеграла (145.1) будет только для таких кривых //(х), которые удовлетворяют дифференциальному уравнению (145.9), называемому уравнением Эйлера (оно было опубликовано впервые в 1744 г.). Уравнение (145.9) при x = t и f = L совпадает с уравнением Лагранжа второго рода для консервативной системы с одной степенью свободы.  [c.403]

Применяя общие теоремы динамики, дифференциальное уравнение вращения твердого тела вокруг неподвижной оси, дифференциальные уравнения плоского движения твердого тела, динамические уравнения Эйлера, уравнения Лагранжа, часто в число рассматриваемых сил ошибочно включают силы инерции. Следует помнить, что силами инерции следует пользоваться только в случае применения  [c.544]

Соотношение (111.67b) является четвертым алгебраическим интегралом дифференциальных уравнений (III. 12) и (III. 14), не зависящим от времени. По теореме о последнем множителе Якоби задача сводится к квадратурам. Отметим, что задача С. В, Ковалевской приводится к квадратурам гиперэллиптического типа. Характер движения тела в случае Ковалевской гораздо сложнее, чем в случаях Эйлера и Лагранжа. В то время как в упомянутых двух классических случаях общие свойства движения твердого тела исследованы очень подробно, этого нельзя сказать о случае Ковалевской. Трудности, связанные с анализом движения тела в последнем случае, заставляют даже обратиться к экспериментальному изучению проблемы ).  [c.453]

Они называются дифференциальными уравнениями Эйлера — Лагранжа , а также, когда они встречаются в приложениях к механике, уравнеттями движения Лагранжа .  [c.84]

Задача 2. Применить дифференциальные уравнения Эйлера — Лагранжа к интегралу (.3.4.16). Если отонадествить " с I/, то дифференциальное уравнение для можно непосредственно проинтегрировать. Показать, что результат в обеих задачах совпадает. Во второй задаче л — константа и совершенно отличается от А из первой задачи.  [c.107]


Таким образом, существенным недостатком классического вариационного исчисления является практическая невозможность учета в сложных задачах ограничений в форме неравенств. В современной математике разработан ряд методов учета таких ограничений—метод штрафных функций, методы возможных направлений (проекционные методы), метод модифицированных множителей Лагранжа, принцип максимума Понтрягина. Первые два метода, используемые в данной работе, будут рассмотрены ниже более подробно. Анализ метода модифицированных множителей Лагранжа применительно к энергетическим задачам проведен в работах [Л. 47, 48]. Исследования по применению принципа максимума Понтрягина к задаче оптимизации долгосрочных режимов ГЭС только еще начаты в работах Л. С. Беляева, Далина, Шена, Нариты [Л. 48, 95, 96]. Авторы отмечают большую перспективность этого метода решения задачи. Исследования но применению принципа максимума Понтрягина, по-видимому, позволят дать объективную оценку этому методу. В настоящей работе этот метод не рассматривается. Р ешение задачи на основе интегрирования дифференциальных уравнений Эйлера не получило в настоящее время распространения, хотя и не доказано, что оно бесперспективно.  [c.37]

В силу независимости вариаций и основной леммы вариационного исчисления [144] из последнего уравнения вытекают дифференциальные уравнения Эйлера—Остроградского и сответствующие граничные условия, которые после исключения множителей Лагранжа (Ях = а, Я,2 = их, К = у> Ь запишутся так  [c.92]

Здесь ах,..., —гладкие ковекторные поля на N, линейно независимые в каждой точке, и т < Следуя методу множителей Лагранжа, введем дополнительные координаты Л1,...,Лт и лагранжиан = а -4). Можно показать (см., например, [19]), что экстремали рассматриваемой вариационной задачи находятся из следующей системы дифференциальных уравнений Эйлера — Лагранжа  [c.25]

В результате исследований, посвященных принципу максимума и аналогичным ему критериям классического вариационного исчисления, были разработаны общие приемы построения необходимых признаков оптимальности, по-видимому, вполне достаточные для большинства типичных экстремальных задач о программном управлении. Как правило, в настоящее время решение этого вопроса не вызывает принципиальных затруднений, во всяком случае, если речь идет о минимизации (максимизации) функционалов вида (8.2) и подобных им. При встрече с новым кругом задач этого типа обычно удается учесть дополнительные обстоятельства и составить соответствующие необходимые условия экстремума по широко известным теперь общим рецептам. Однако составление дифференциальных уравнений, выражающих необходимые условия оптимальности, является лишь первым, хотя и чрезвычайно важным этапом в решении конкретных проблем. Следующий этап состоит в интегрировании этих уравнений с учетом краевых условий, которым должно удовлетворять искомое оптимальное движение. Эта краевая задача, связанная с необходимостью привести управляемый объект в заданное состояние, остается до сих пор трудной проблемой. Дело заключается в следующем. Необходимые признаки оптимальности, выражаемые дифференциальными уравнениями Эйлера — Лагранжа для координат Х1 1) и множителей Лагранжа Я-г ( ) (или для имеющих тот л е смысл координат г) г 1) вектора -ф ( ) в случае принципа максимума), определяют внутренние свойства оптимальных движений, описывая их локальное поведение в окрестности каждой точки на данной траектории. В силу этих свойств каждое оптимальное движение развертывается во времени совершенно определенным образом, отталкиваясь от начальных условий х ( о) и ( о)-Начальные данные ( о) обычно задаются по условиям задачи. Величины ( о) ("Фг ( о)) определяют по условиям принципа максимума направление в пространстве х , в котором уходит оптимальное движение х (t) из точки X to). Трудность состоит в выборе величин (Ьо), которые обеспечивают прицеливание оптимального движения как раз в заданное конечное состояние X 1х) (или на заданное многообразие М конечных состояний и т. п.). Эффективное преодоление этой трудности, как правило, тормозится невозможностью получения явной зависимости между величинами х ( 1) и А, ( о) вследствие неинтегрирз емости в замкнутой форме дифференциальных уравнений задачи. Каждая новая серия соответствующих краевых задач, особенно, если речь идет о нелинейных объектах, требует обычно для своего разрешения подбора специальных вычислительных алгоритмов. Лишь для отдельных классов задач выведены некоторые закономерности, облегчающие их конкретное решение.  [c.192]

Не следует делать поспешного вывода о том, что свет всегда распространяется по наикратчалшему расстоянию. Часто путь луча оказывается не минимальным, а максимальным. Принцип Ферма просто указывает на наличие экстремума. В случае однородной среды ([х = onst) из уравнения (3.1) вытекает дифференциальное уравнение Эйлера — Лагранжа, описывающее прямолинейное распространение света. В случае же неоднородной среды (например, атмосферы, плотность которой и, следовательно, показатель преломления переменны) путь, удовлетворяющий уравнению (3.1), будет криволинейным.  [c.58]

Производные Лагранжа содержат, согласно (1 5), вообще говоря, вторые производные функций Xk (i), и соответствующая система п дифференциальных уравнений Эйлера-Лагранжа есть система уравнений второго порядка. Папигпем ее в виде системы 2п дифференциальных уравнений первого порядка. Положим для этого  [c.20]

В XVIII в. начинается интенсивное развитие в механике аналитических методов, т. е. методов,- основанных на применении дифференциального и интегрального исчислений. Методы решения задач динамики точки и твердого тела путем составления и интегрирования соответствующих дифференциальных уравнений были разработаны великим математиком и механиком Л. Эйлером (1707—1783). Из других исследований в этой области наибольшее значение для развития механики имели труды выдающихся французских ученых Ж. Даламбера (1717—1783), предложившего свой известный принцип решения зйдач динамики, и Ж. Лагранжа (1736—1813), разработавшего общий аналитический метод решения задач динамики на основе принципа Даламбера и принципа возможных перемещений. В настоящее время аналитические методы решения задач являются в динамике основными.  [c.7]


Введение вспомогательных переменных р, q, г ц использование уравнений Лагранжа в форме уравнений Эйлера (53)- -(60) имеет несомнен ые преимущества в тех частных случаях, когда главные моменты действующих сил относительно осей г), не зависят от эйлеровых углов и их производных например, когда эти моменты постоянны (в частности, равны нулю) или являются заданными функциями времени. В этих случаях систему (60) можно рассматривать как независимую систему дифференциальных уравнений относительно вспомогательных переменных р, q, г если эта система разрешена, то уравнения (53) затем определяют эйлеровы углы ф, г , 0 как функции времени.  [c.194]

Х(ля составления дифференциальных уравнений движения свободного твердого тела можно иопъзовз ъс л уравнениями Лагранжа, отнесенными к обобщенным координатам трем координатам центра инерции твердого тела и трем углам Эйлера.  [c.543]

Для того чтобы полностью определить закон движения твердого тела, системы динамических уравнений Эйлера недостаточно. Эту систему следует допо.пнить кинематическими соотношениями ( 6.2). В целом получается система дифференциальных уравнений, исследование свойств решения которой часто сопряжено со значительными трудностями. Ниже будут рассмотрены три случая, когда для этой системы аналитически может быть построено общее решение. Это — случай Эйлера, когда момент внешних сил отсутствует, а также случаи Лагранжа-Пуассона и Ковалевской, когда движение вокруг неподвижной точки происходит под действием параллельного поля силы тяжести.  [c.466]

До конца XIX в. случаи движения твердого тела, исследованные Эйлером и Лагранжем, были единственными, в которых было проведено полное интегрирование системы дифференциальных уравнений (III. 12) и (III. 14). На протяжении большей части минувшего столетия изучались разные свойства движений в указанных двух классических случаях. При этом были найдены результаты, о характере которых дает представление интерпретация Пуансо движения по инерции твердого тела вокруг закрепленной точки. В этом направлении работали Максвелл, Сильвестр, Мак-Куллах, Якоби, Сомов, Дарбу и др.  [c.448]


Смотреть страницы где упоминается термин Дифференциальные уравнения Эйлера — Лагранжа : [c.50]    [c.260]    [c.83]    [c.142]    [c.198]    [c.60]    [c.713]    [c.17]    [c.18]    [c.20]    [c.13]    [c.400]   
Смотреть главы в:

Аналитическая механика  -> Дифференциальные уравнения Эйлера — Лагранжа



ПОИСК



Вариационное дифференциальное уравнение Эйлера — Лагранж

Дифференциальное уравнение в Эйлера

Дифференциальные уравнения Эйлера —Лагранжа в случае п степеней свободы

Лагранжа - Эйлера уравнения уравнения Эйлера-Лагранжа

Лагранжа Эйлера

Лагранжа дифференциальное

Лекция пятнадцатая (Гидродинамика. Дифференциальные уравнения Лагранжа и Эйлера. Вращение жидких частиц. Вихревые линии и вихревые нити. Потенциал скоростей Многозначность потенциала скоростей в многосвязном пространстве)

Уравнение Эйлера

Уравнение Эйлера — Лагранжа

Уравнения Лагранжа

Эйлер

Эйлера лагранжев

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте