Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Угловые методы

В данном справочнике рассмотрены линейные и угловые методы и средства измерения размеров в машиностроении. Именно эти измерения в промышленности технически развитых стран составляют 85—90% от всех существующих видов измерений [37]. Для повышения точности выполнения размерных параметров деталей приборостроительной промышленностью освоен выпуск различных измерительных средств, отвечающих современным требованиям высокоточных преобразователей различных конструкций (индуктивные, фотоэлектрические, электронные), различных приборов для контроля шероховатости обработанных поверхностей (оптико-механические приборы ПСС, ПТС, МИИ, профилометры и профилографы), приборов для контроля погрешностей формы и расположения поверхностей (оптические линейки, автоколлиматоры, интерферометры, кругломеры) и многих других приборов. В связи о тем, что трудоемкость контрольных операций в машиностроительной и приборостроительной промышленности составляет в среднем 10—50% от трудоемкости механической обработки, в последнее время широкое применение получили приборы активного контроля размеров деталей (пневматические приборы моделей БВ-6060, БВ-4009, БВ-4091, индуктивные приборы модели АК-ЗМ), обеспечивающие необходимую точность размеров непосредственно при изготовлении деталей Все эти измерительные средства, наряду с такими давно зарекомендовавшими себя приборами, как индикаторы, микрометры, оптиметры и др., рассмотрены в настоящем издании справочника.  [c.3]


Приводимые значения коэффициента расхода соответствуют угловому методу отбора давления. При других методах отбора давления значения ц меняются.  [c.164]

Для текущих производственных испытаний широко применяются угловые методы измерения показателей преломления, основанные па измерении предельного угла преломления или угла полного внутреннего отражения.  [c.465]

Описанные ранее методы измерения показателей преломления и дисперсии используются при излучении прозрачных и слабо поглощающих веществ. По мере возрастания поглощательной способности вещества их исследование становится затруднительным и даже совершенно невоз.можным. В случае, напрпмер, угловых методов имеет место настолько сильное ослабление интенсивности светового пучка, что исчезает граница светотени. В интерференционных методах сильное поглощение приводит к значительному ослаблению интенсивности одного из интерферирующих пучков, в результате чего уменьшается контраст интерференционной картины или она даже совсем не наблюдается. Кроме того, указанные методы удобно использовать при исследованиях в видимой и ультрафиолетовой областях спектра, где можно применять визуальные наблюдения и фотографические методы регистрации. При исследованиях в инфракрасной области эта проблема существенно усложняется.  [c.486]

Пример 3. Методом планов найти угловые скорость и ускорение лепестка (звена 5) в механизме привода лепестков фотозатвора (рис. 26, а). Дано ф5 = 270°, / = 0,01 м, (gf. = 0,080 м, = 0,12 м, /(,д = 0,084 м, / DF = 30", //j = 0,02 м, = 0,058 м, Ipu = 0,07 м, угловая скорость кривошипа  [c.51]

Для построения центрового профиля а — а кулачка воспользуемся методом обращения движения (рис. 26.30), для чего сообщим кулачку и толкателю общую угловую скорость —со,, равную и обратно направленную угловой скорости кулачка 1. Тогда толкатель 2 займет на фазе подъема положения 1, 2, 3, 4 и 5, а точка В займет последовательно положения В и В ,  [c.540]

Л. М, Сравнительная оценка численных методов определения угловых коэффициентов.— В кн. Научные труды Магнитогорского горно-металлургического института, Магнитогорск, 1975, № 16, с. 18—27.  [c.204]

Указанные обстоятельства определили условия проведения опытов [Л. 89, 90, 144, 145], в которых были использованы дисперсные материалы (графит, кварцевый песок, алюмосиликатный катализатор и др.), по своим сыпучим свойствам близкие к идеальным. Влияние различных факторов на характер движения оценивалось по изменению профиля скорости окрашенного элемента слоя. Движение наблюдалось через плоскую застекленную стенку полуцилиндрического прямоугольного и других каналов либо с помощью просвечивания рентгеновскими лучами через стенку круглого стеклянного канала. В последнем случае использовался диагностический рентгеновский аппарат, а частицы слоя предварительно смачивались барием. Измерительный участок исключал влияние концевых эффектов. Проверка, произведенная радиоактивным [Л. 242] и рентгенологическим [Л. 237] методами, показала, что стеклянная стенка не искажает картину движения. Влияние углового эффекта в месте стыка стекла и стенки уменьшается при использовании каналов прямоугольного сечения. Во всех случаях результаты измерения были представлены в относительных величинах и носят в основном качественный характер.  [c.292]


При обработке на АЛ необходима тщательная отработка конструкции объекта производства на технологичность с учетом объема выпуска, особенностей системы автоматического транспортирования и базирования, а также применение прогрессивных методов обработки (базы для установки и крепления, технологические приливы для фиксации и транспортирования, увеличение жесткости, упрощение конфигурации и системы расположения отверстий, устранение угловых приливов и т. д.).  [c.94]

Методы и средства контроля углов. Контроль углов обработанных деталей осуществляют угольниками, угловыми мерами, коническими калибрами, механическими и оптическими делительными головками, гониометрами, синусными линейками и др.  [c.153]

Кинематику планетарных передач удобно исследовать методом остановки водила (метод Виллиса), когда всей передаче сообщается дополнительное вращение с угловой скоростью, равной угловой скорости водила, но обратной по направлению. Относительное движение звеньев при этом остается неизменным. Планетарная передача как бы превращается в обычную зубчатую передачу, кинематика которой определяется просто. Передаточные отношения звеньев а и Ь такой передачи определяются по формулам  [c.161]

В зависимости от требуемой точности изготовления детали линейные и угловые размеры наносят несколькими методами. При повышенной точности изготовления детали размеры наносят от общей базы (см. черт. 47) или координатным способом, с указанием размерных чисел в сводной таблице (см. черт. 53). Если повышенная точность изготовления детали не требуется, то размеры можно наносить цепочкой (см. черт. 49). Замкнутые цепочки не допускаются, за исключением случаев, когда один размер указан как справочный. Одинаковые расстояния можно указывать так, как предлагают черт. 50, 51. В тех случаях, когда повышенная точность изготовления детали требуется только для части детали, размеры наносятся двумя способами — от общих баз и цепочкой (см. черт. 48), т. е. комбинированным способом. Этот способ чаще всего применяют при нанесении размеров.  [c.134]

Аналитическим методом расчета следует пользоваться в тех случаях, когда необходимая точность решения задачи задана. Рассмотрим этот метод на примере кинематического анализа шарнирного четырехзвенника (рис. 35). Пусть кривошип АВ = li вращается с постоянной угловой скоростью u)i.  [c.45]

Графоаналитический метод кинематического анализа колесных механизмов. В основе метода лежит построение планов (картин) линейных и угловых скоростей звеньев механизма.  [c.48]

Суть метода Виллиса заключается в том, что всем звеньям планетарного механизма сообщается дополнительное вращение с угловой скоростью, равной по величине, но противоположной  [c.323]

Приведенный выше метод является универсальным, так как он применим к замкнутым планетарным механизмам практически любой степени сложности. Необходимо также подчеркнуть, что при использовании с)юрмул для определения величин передаточных отношений и угловых скоростей звеньев планетарных механизмов особое внимание следует уделять знакам этих величин.  [c.327]

Из уравнений (14.1) и (14.2) представляют интерес два следствия. Во-первых, при г + / = 90°, tg(r + ) становится бесконечным и / р = 0, а это означает, что отраженный свет полностью поляризован в плоскости поверхности. При г+ = 90°, sin г —eos i и из уравнения Снелла n = sin /sin r — tg i. Это основа углового метода Брюстера для определения показателя преломления, в котором определяется угол падения света, при котором отраженный луч может полностью отсекаться путем использования поворотного поляризующего фильтра. Методика требует высокоточной аппаратуры и может использоваться для определения показателя преломления черного стекла (используемого как стандарт при измерении блеска) или лаковых пленок на черном стекле, а также (с некоторым снижением точности) для пленок с высоким блеском.  [c.419]

Для определения положений кулачкового механизма с качающимся коромыслом (рис. 6.4) можно также применить метод обращения движения. Рассмотрим перманентное движение механизма, когда угловая скорость кулачка / принята постоянной и обобщенной координатой является угол поворота кулачка. Пусть кривая р — р будет профилем кулачка 1. В рассматриваемом случае задача сводится к нахождению последовательных положений звена 2, точка В которого нахо-профиле р—р. Сообщаем всему механизму угловую 0) = — (i)i, равную но величине и противоиолож-направлеиию угловой скорости <0i кулачка 1. Тогда 1 становится как бы неподвижным, а коромысло 2 вращается вокруг оси О с угловой скоростью = — Ох  [c.132]


Определение наибольшей максимальной скорости и наименьшей минимальной скорости мо.жет быть также сделано методом сравнения избыточных плои1,адок, заключенных между ординатами, соответствующими углам ф, ах и ф,п ,1, при условии малого сдвига максимальных и минимальных значений угловой скорости по отношению к максимальным и минимальным значениям кинетической энергии. В практических инженерных расчетах во многих случаях сдвиги эти весьма малы, поэтому применение изложенного метода сравнения избыточных площадок вполне допустимо.  [c.386]

Величины моментов Жпер и М ер могут быть определены, если провести кинетостатический расчет механизма и определить все силы инерции звеньев в предположении постоянства угловой скорости. Можно также с помощью рычага Жуковского (см. С8) или методом приведения сил и моментов (см. 69) определить те же моменты Мпер и Мпер.  [c.391]

Рассмотренный в настоящем параграфе метод определения момента инерции маховика является приближенным. Величину момента инерции маховика можно уточнить, если после определения его момента инерции приближенным методом построить одним из способов, указанных в 74, кривую угловой скорости > на участке ф п (рчс- 19.12, а) и определить,значительно ли отклоняются полученные значения для со ,ах и сотш от заданных. Если эти отклонения значительны, то, увеличив или уменьшив полученное приближенное значение для момента инерции маховика, можно получить более точное решение задачи.  [c.397]

Механизмы некруглых колес получили распространение в современном приборостроении и в общем машиностроении. Они могут воспроизводить большое число разнообразных функций передаточного отношения. Рассмотрим геометрический метод ре-ше1П1я задачи о построении центроид этих механизмов. Как было показано выше ( 94, 1°), требуемый закон движения входного и выходтюго звеньев может быть задан или в виде функции положения, или в виде функции передаточного отношения. Предположим, что нам заданы графики угловых скоростей oj и (О3 входного и выходного звеньев в функции угла поворота входного звена 2 и задано расстояние АВ между осями вращения звеньев 2 w 3 (рис. 21.2, а). Так как угловая скорость входного звена 2 = = (Од (фз) может быть всегда []ринята постоянной и равной 0)2 = = 1, то функция передаточного отношения Изг (Фг)- представленная на рис. 21.2, б, имеет вид кривой, совпадающей с кривой 0>j = 0)3 (фз).  [c.417]

Ряд методов решения уравнения переноса основан на усреднении углового распределения излучения и его приближенном представлении [160]. Простейший из них — метод Шварцшильда — Шустера. Сущность его состоит в том, что вместо искомой величины (интенсивности излучения, зависящей как от координаты в пределах рассеивающей среды, так и от направления) определяются усредненные по полусферам интенсивности  [c.142]

Шлифование зубьев методом обкатки основано на принципе зацепления обрабатываемого колеса с зубчатой рейкой. При этом элементы воображаемой зубчатой рейки образованы абразивными инструментами. Так, рейку могут представить два абразивных круга, шлифующие торцы которых расположены вдоль сторон зубьев рейки. Элемент рейки может быть образован и одним абразивным кругом, заправленным по форме ее зуба, Для выполнения процесса шлифования методом обкатки осуществляют не только все движения указанной пары, находящейся в зацеплении, но и движения, необходимые для процесса резания. После обработки двух боковых поверхностей зубьев колесо поворачивается на величину углового шага (I/2). Движения резания и деления обеспечивает специальное устройство зубошлпфовальных станков.  [c.384]

В основе графического метода построения профиля кулачка лежит метод обращения движения, заключающийся в том, что всем звеньям ме.чанизма условно сообнхается дополнительное вращение с угловой скоростью, равной угловой скорости кулачка, но в обратную сторону. В результате этого кулачок останавливается, а стойка вместе с толкателем (коромыслом) получает вращательное движение вокруг оси кулачка 0 с угловой скоростью соь Кроме того, толкатель будет совершать движение относительно стойки по закону, который определяется профилем кулачка.  [c.62]

По методу Ф. Виттенбауэра на основании ранее построенных графиков АТ (ф) и (ф) необходимо построить диаграмму энергомасс А7 (/п) (рис. 4.12, з). К кривой диаграммы проводятся касательные под углами и которые соответствуют максимальной п минимальной угловым скоростям звена приведения с маховиком, причем  [c.137]

По методу Н. И. Мерналова кривая ДГ (ф) одновременно является приближенной кривой изменения угловой скорости звена приведения Аш (ф), по в другом масиггабе. Такое приближение является вполне приемлемым при б 0,04. Масштабный коэффипи-епт можно определить по формуле (4.46), учитывая, что  [c.138]

Для обработки прямых зубьев небольших конических зубчатых колес применяют производительный метод — круговое протягивание зубьев (рис. 170, а) на специальных зубопротяжных станках. Режущим инструментом служит круговая протяжка ] (рис. 170, б), состоящая из нескольких секций фасонных резцов (15 секций по пяти резцов в каждой секции). Резцы с изменяющимся профилем расположены в протяжке в последовательном порядке для чернового, получистового и чистового нарезания зубьев. Каждый резец при вращении круговой протяжки снимает определенный слой металла с заготовки 2 в соответствии с величиной припуска. Протяжка вращается с постоянной угловой скоростью и в то же время совершает поступательное движение, скорость которого различна на отдельных  [c.313]


Одной 113 основных характеристик средств измерений линейных и угловых величин контактным методом является измерительное усилие, которое возникает в зоне контакта чувствительного элемент средства измерений с деталшю или другим исследуемым объектом.  [c.112]

В полостях, в которых отношение размера отверстия к размеру самой полости очень мало. В этих условиях подробности угловых характеристик отражения и излучения стенок не являются критическими, так как общий эффект влияния отверстия мал. В пирометрии по излучению применяют полости удобной формы, и поэтому подробные данные об угловых зависимостях оптических характеристик поверхностей не нужны. Если не учитывать полости, имеющие очень необычную геометрию, то предположение о диффузном, или ламбертовском, характере излучения, как правило, приводит к весьма малым ошибкам, так как только при очень больших углах к нормали это предположение перестает быть верным. Предположение о том, что все материалы диффузно отражают тепловое излучение, значительно менее оправданно. В действительности все металлы и большинство других поверхностей, если они отполированы, являются зеркальными отражателями излучения, и это необходимо учитывать. Методы огрубления поверхности позволяют  [c.328]

Все эти силы по отношению к ведущему звену являются реальными внешними силами. При определении приведенной силы инер-ции Р р будем учитывать силы инерции всех движущихся звеньев механизма, за исключением ведущего звена, а также связанного с ним маховика и, кроме того, будем исходить из предпосылки, что ведущее звено вращается с постоянной угловой скоростью Последнее обстоятельство и является одним из источников неточности рассматриваемого метода (при определении силы Р ]р пренебрегаем силами инерции движущихся звеньев механизма, вознн-  [c.105]

После разметки траектории ведомой точки (рис. 165, 6) соответственно размечают угол поворота кулачка, деля этот угол по числу интервалов разметки на равные части Асру. Аналогично угол фв делят на равные части Афв. Затем, используя метод обращения движения, строят профиль удаления кулачка. Сущность этого метода заключается в том, что всей системе (кулачок, толкатель, стойка) сообщают вращение вокруг центра О с угловой скоростью —(О, равной угловой скорости со кулачка по абсолютной величине, но противоположной ей по направлению. Тогда кулачок останавливается, стойка получает вращение вокруг центра О с угловой скоростью —со, а толкатель получает сложное движение, слагающееся из движений посту-  [c.242]

Абсолютную угловую скорость сателлита как в трехзвенном, так и в четырехзвенном дифференциалах можно определить, записав на основании метода Виллиса выражение передаточного отношения от одного из центральных колес к этому сателлиту. Например, для дис )ференциала, схема которого приведена на рис. 205, имеем  [c.325]


Смотреть страницы где упоминается термин Угловые методы : [c.460]    [c.461]    [c.463]    [c.465]    [c.467]    [c.166]    [c.447]    [c.450]    [c.127]    [c.151]    [c.307]    [c.219]    [c.129]    [c.93]    [c.476]    [c.23]    [c.37]   
Смотреть главы в:

Прикладная физическая оптика  -> Угловые методы



ПОИСК



Алгебраический метод определения угловых коэффициентов

Аналитические методы расчета критических угловых скоростей двухопорного вала переменной жесткости

Выбор методов и средств измерения угловых размеров

Графо-аналитический и экспериментальные методы определения угловых коэффициентов

Измерения — Методы 62, 87, 93 — Определение линейных и угловых размеров

Использование метода граничных элементов при наличии угловых точек

Исследование висячих скачков асимптотическими методами. Скачок, выходящий из угловой точки при трансзвуковом обтекании

Исследование углового коэффициента излучения по методу светового моделирования

Метод Ватсона — Редже (комплексный угловой момент)

Метод наблюдения угловых и осевых мод газового лазера непрерывного действия

Метод угловых деформаций

Метод угловых коэффициентов

Методы и средства поверки угловых мер

Методы измерения углов с помощью жестких угловых мер

Методы определения угловых коэффициентов излучения

Методы определения угловых коэффициентов лучистого теплообмена

Методы рассмотрения в случае угловых моментов М)-метод

Методы расчета линейных и угловых размерных цепей

Методы регулирования углового положения ротора синхронного двигателя и возможные области их применения при управлении фазой нагрузки компрессорных установок

Методы угловой селекции излучения

Определение диффузных угловых коэффициентов методом контурного интегрирования

Определение коэффициента трения во вращательной кинематической паре методом угловых аналогов

Определение линейных и угловых скоростей в звеньях плоских механизмов методом построения планов скоростей

Определение линейных и угловых ускорений в звеньях плоских механизмов методом построения планов ускорений

Определение пространственный - Анализ с помощью метода матриц 424 " Оп ределение положения звеньев 419, скорости звеньев 427 Параметризация 417 - Угловая скорость звеньев

Определение угловых коэффициентов методом интегрирования

Основы аналитического метода определения скоростей и ускорений точек, угловых скоростей и угловых ускорений звеньев

Подбор радиусов круговых кривых и определение рихтовок методом угловых диаграмм Теоретические основы метода угловых диаграмм

Проектирование методом огибающих (огибаемых). Основная теорема об отношении угловых скоростей

Распространение метода Вишика — Люстерника на эллиптические краевые задачи для областей, граница которых имеет угловые точки

Расчет угловых коэффициентов методом статистической имитации

Связи Метод подсчета угловых подвижносте

Угловой коэффициент методом контурного интегрирования

Улучшение угловой направленности с помощью метода усреднения

ЧАСТОТА УГЛОВАЯ - ЧИСТОТА ПОВЕРХНОСТИ методу остатка

Частота угловая собственных колебаний — Определение по методу остатка

Энергетический метод расчета критической угловой скорости многодискового ротора (метод Рэлея)



© 2025 Mash-xxl.info Реклама на сайте