Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварка углеродистых, легированных и высоколегированных сталей

При газовой сварке углеродистых, легированных и высоколегированных сталей в качестве присадочного материала применяется сварочная проволока по ГОСТ, 2246— 70. Согласно этому стандарту, проволока имеет следующие диаметры 0,3 0,5 0,8 1 1,2 1,4 1,6 2 2,5 3 4 5 6 8 10 и 12 мм.  [c.16]

Ручную дуговую сварку можно применять для сварки углеродистых, легированных и высоколегированных сталей, а также чугуна, медных и алюминиевых сплавов толщиной от 1 до 50 мм. Сваривать можно в любых пространственных положениях, любой конфигурации и любой протяженности швы. Ручную дуговую сварку используют также для наплавки.  [c.450]


СВАРКА УГЛЕРОДИСТЫХ, ЛЕГИРОВАННЫХ И ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ  [c.251]

В справочнике представлены основные сведения о сталях различных классов, наиболее широко используемых для сварных конструкций. Описаны металлургические процессы и технологические особенности электродуговой сварки углеродистых, легированных и высоколегированных сталей под флюсом, в среде защитных газов и покрытыми электродами с подробными рекомендациями и характеристиками сварочных материалов. Приведены структура, химический состав, механические и коррозионные свойства сварных швов и соединений. Описаны способы уменьшения и устранения напряжений и деформаций, возникающих при сварке.  [c.2]

Стандартом установлены классификация припоев по химическому составу и область их применения Регламентированы сортамент, химический состав, правила упаковки, маркировки, транспортирования и хранения Стандарт распространяется на холоднотянутую стальную проволоку для дуговой и газовой сварки. Регламентируются диаметры проволоки, допускаемые отклонения и химический состав углеродистых легированных и высоколегированных сталей, из которых изготовляется проволока  [c.534]

Для сварки углеродистых и низколегированных конструкционных сталей преимущественно используют высококремнистые флюсы, для сварки легированных и высоколегированных сталей - низкокремнистые (табл. 2.35).  [c.186]

К качеству прихваток предъявляются такие же требования, как и к основному сварному шву. При обнаружении дефектов прихватки должны быть удалены. Прихватка сборочных приспособлений и других временных деталей, в том числе и вторичного сварочного провода, к трубам с толщиной стенки менее 8 мм из легированных и высоколегированных сталей, к которым предъявляются требования по стойкости к межкристаллитной коррозии, не допускается. Сварочные приспособления и вспомогательные детали, привариваемые к трубопроводам из углеродистых и низколегированных сталей, должны быть изготовлены из низкоуглеродистых сталей. Приварку выполняют с соблюдением требований, предъявляемых к сварке стыков трубопроводов из стали данной марки. Места приварки деталей и приспособлений после их удаления тщательно зачищают и визуально проверяют на отсутствие дефектов.  [c.164]

Процесс электрошлаковой сварки применяют для сварки углеродистых конструкционных, легированных и высоколегированных сталей, чугуна и титана. При этом сварка продольных швов может выполняться одним или несколькими проволочными и пластинчатыми электродами.  [c.214]


Проволока изготовляется различного химического состава. Углеродистую проволоку употребляют для сварки углеродистых и низколегированных сталей, а также при изготовлении электродов для наплавочных работ. Легированную и высоколегированную проволоку употребляют для сварки легированных и высоколегированных сталей (табл. 1).  [c.190]

Наиболее распространена для изготовления электродов, предназначенных для сварки низкоуглеродистой и низколегированной стали, низкоуглеродистая проволока. Легированную и высоколегированную проволоку применяют для изготовления электродов, необходимых для сварки легированной и высоколегированной стали и для наплавочных работ. Однако в некоторых случаях высоколегированные электроды могут быть применены для сварки углеродистых и низколегированных сталей.  [c.132]

Состав некоторых керамических флюсов приведен в табл. 11. Флюсы К-11 и КВС-19 применяют для сварки углеродистых сталей флюс ФЦК — для сварки легированных и высоколегированных сталей.  [c.57]

Использование новых конструкционных металлов и сплавов для изготовления деталей и изделий разнообразного назначения возможно только при условии разработки методов их соединения и в частности сварки. В настоящее время сварными изготовляются изделия и конструкции не только из углеродистых, но и из различных легированных и высоколегированных сталей, никелевых  [c.5]

Примечания 1. При толщине стенки аппарата меньше 8 следует применять подкладные листы под штуцера. 2. Марки материала штуцера и подкладного листа должны соответствовать марке материала корпуса аппарата. 3. Сварку деталей из углеродистых и низколегированных сталей следует выполнять покрытыми металлическими электродами по ГОСТ 9467—75, из легированных и высоколегированных сталей — электродами по ГОСТ 10052—75. 4. Толщина подкладного листа определяется как разность — ио должна быть ие менее А. 6. Монтажные штуцера на вертикальных аппаратах должны размещаться не меиее чем на 1000 мм выше центра тяжести в плане их следует ориентировать с таким расчетом, чтобы после подъема аппарата в вертикальное положение не требовался разворот его вокруг оси.  [c.326]

При сварке некоторых сталей обнаруживается значительное снижение ударной вязкости металла в участке термического старения. Легированные и высоколегированные, а также углеродистые спокойные стали практически не проявляют склонности к термическому старению в условиях термического цикла сварки. Углеродистые кипящие стали, а также обычные бессемеровские проявляют эту склонность в околошовной зоне, что сильно снижает ударную вязкость металла в этом участке (особенно при понижении температуры испытания). Склонность к термическому старению сталей вызвана повышенным содержанием в них кислорода и азота. Под воздействием нагрева в определенном интервале температур (200— 300° С) и напряжений, возникающих в сварном соединении, выделяются соединения кислорода и азота по границам зерен, вследствие чего повышается хрупкость металла. В связи с этим кипящие мартеновские и обычные бессемеровские стали не используются в сварных конструкциях, эксплуатируемых при пониженных температурах и динамических нагрузках.  [c.83]

Технологические особенности сварки высоколегированных сталей связаны с их физическими свойствами и системой легирования. Пониженная теплопроводность и большое электрическое сопротивление (примерно в 5 раз больше, чем у углеродистых сталей) способствуют большей скорости плавления металла, большей глубине проплавления и коэффициенту наплавки, поэтому для сварки высоколегированных сталей требуются меньшие токи и погонные энергии по сравнению с углеродистыми, укороченные электроды при ручной сварке, меньше вылет электрода и больше скорость подачи проволоки при механизированной сварке.  [c.127]

По назначению У — для сварки углеродистых и низколегированных сталей с временным сопротивлением разрыву до 60 кгс/мм Л — для сварки легированных сталей с Ов>60 кгс/мм Т — для сварки теплоустойчивых сталей В — для сварки высоколегированных сталей Н — для наплавки поверхностных слоев с особыми свойствами.  [c.64]


Согласно ГОСТ 9466-75 электроды для сварки и наплавки сталей в зависимости от назначения разделены на классы для сварки углеродистых и низколегированных конструкционных сталей с < 600 МПа -У (условное обозначение) для сварки легированных конструкционных сталей с Qb > 600 МПа - Л для сварки теплоустойчивых сталей - Т для сварки высоколегированных сталей с особыми свойствами - В для наплавки поверхностных слоев с особыми свойствами - Н. Этот ГОСТ регламентирует размеры электродов, толщину и типы покрытий, условные обозначения, общие технические требования, правила приемки и методы испытания.  [c.36]

Стандартом предусматривается изготовление пяти марок проволоки для сварки углеродистых, 30 марок для сварки легированных и 39 марок для сварки высоколегированных сталей (табл. 3).  [c.16]

В современном машиностроении наряду с обычной малоуглеродистой сталью широко применяют металлы и сплавы, обладающие высокими механическими или специальными физическими свойствами, такими, как жаропрочность, коррозионная стойкость и т. д. Несмотря па высокие эксплуатационные свойства этих материалов, сварка их в большинстве случаев связана с определенными трудностями. К таким металлам и сплавам относятся углеродистые и легированные стали (конструкционные и теплостойкие), высоколегированные стали (нержавеющие и жаропрочные), чугун, медь, алюминий, магний, активные металлы и их сплавы.  [c.421]

По назначению электроды подразделяют на четыре класса по ГОСТ 9466—60 1) для сварки углеродистых и низколегированных конструкционных сталей 2) для сварки легированных теплоустойчивых сталей 3) для сварки высоколегированных сталей 4) для наплавки поверхностных слоев с особыми свойствами. Электроды для сварки конструкционных сталей Ст.З, сталь 10, сталь 20, сталь 45, сталь ЗОХГС и др. подразделяются на типы Э-42, Э-145 и т. д. в зависимости от механических свойств наплавленного металла. Цифра в обозначении типа электрода обозначает прочность наплавленного металла в килограммах на 1 мм .  [c.450]

Требования, предъявляемые к электродам для сварки углеродистых и легированных конструкционных сталей, содержатся в ГОСТ 9467—60, а для высоколегированных — в ГОСТ 10052—62. Правила приемки и методы испытания электродов предусмотрены ГОСТ 9466—60. Электроды для сварки и наплавки сталей разделяют на три группы 1) для сварки углеродистых и легированных конструкционных сталей, 2) для сварки легированных теплоустойчивых сталей 3) для сварки высоколегированных нержавеющих и жаропрочных сталей.  [c.202]

По назначению стальные электроды в соответствии с ГОСТ 9466—75 подразделяют на следуюш,ие четыре класса для сварки углеродистых и легированных конструкционных сталей для сварки теплоустойчивых сталей для сварки высоколегированных сталей для наплавки поверхностных слоев с особыми свойствами.  [c.282]

ГОСТ 2246—70 устанавливает 77 марок сварочной проволоки, которые подразделяются на три основные группы углеродистые (6 марок) для сварки низкоуглеродистых, среднеуглеродистых и некоторых сортов низколегированных сталей легированные (30 марок) и высоколегированные (41 марка).  [c.82]

Электроотливку слитков и электроподогрев углеродистых и легированных сталей рекомендуется производить с применением флюсов одной из следующих марок АНФ-1 АНФ-6 АНФ-7 48-ОФ-6. Перечисленные флюсы можно также применять для сварки пластинами высокоуглеродистых и высоколегированных сталей, а также для сварки чугуна.  [c.347]

По химическому составу жидких шлаков электродные покрытия можно разделить на кислые и основные. В шлаках кислых покрытий преобладает окись кремния SiOj. Кислые шлаки обладают хорошими раскисляющими свойствами, но через них нельзя производить широкое легирование наплавленного металла в связи с интенсивным выгоранием легирующих примесей. В состав кислых покрытий входят марганцевая руда, полевой шпат, рутил (природный минерал, состоящий в основном из двуокиси титана) и т. п. Электроды с кислыми покрытиями (рудно-кислым, рутило-вым) применяется для сварки углеродистых и низколегированных сталей. В шлаках основных покрытий преобладает окись кальция СаО. Основные шлаки обеспечивают достаточно хорошее раскисление и позволяют вводить в металл шва значительные количества легирующих элементов. В состав основных покрытий входит мрамор, плавиковый шпат ( aFj) и ферросплавы. Электроды с основным покрытием (фтористокальциевым) применяют для сварки легированных и высоколегированных сталей.  [c.308]

Отраслевым стандартом Минмонтажспецстроя СССР установлен типовой технологический процесс ручной дуговой сварки покрытыми электродами стальных трубопроводов из углеродистых низколегированных, легированных и высоколегированных сталей. Он устанавливает правила выполнения следующих операций подготовку кромок труб в соответствии с ГОСТ 16037—80 сборку стыков труб с помощью специальных приспособлений предварительный подогрев стыков (если требуется) прихватку стыков (для труб диаметром до 100 мм — в двух взаимно противоположных местах, для труб диаметром 100 — 600 мм — в 3—4 местах, для труб диаметром свыше 600 мм — через каждые 300—400 мм, длина прихваток 2т 2,5 толщины стенки трубы, но не менее 15 мм и не более 60 мм, высота 0,4—0,5 толщины стенки до 10 м, но не менее 5 мм при большей тощине стенки) сварку поворотных стыков труб диаметром до 219 мм (рис. 13.13, а) и диаметром более 219 мм (рис.  [c.177]


Электроды классифицируют по назначению и виду покрытия. По назначению стальные электроды подразделяют на пять классов для сварки углеродистых и низколегированных конструкционных сталей с 0е < 600 МПа, легированных конструкционных сталей с Qb > 600 МПа, легированных жаропрочных сталей, высоколегированных сталей с особыми свойствами и для наплав-. ки поверхностных слоев с особыми свойствами. Электроды для сварки конструкционных сталей делят на типы Э38, Э42,. .., Э150. Цифры в обозначении типа электродов обозначают ав наплавленного металла в 10 МПа. В обозначение типов электродов для сварки жаропрочных и высоколегированных сталей и наплавочных входит  [c.229]

Для электроотливки слитков углеродистых и легированных сталей, а также для сварки пластинчатыми электродами высокоуглеродистых и высоколегированных сталей и чугуна рекомендуются флюсы ЭС-4 ЭС-5 48-ОФ-6 и АНФ-1.  [c.387]

Качество сварных соединений в значительной степени определяется надежностью защиты сварочной ванны и максимально разогретой зоны от воздействия окружающей среды, а также отсутствием в шве нор, шлаковых включений и других дефектов. Обеспечение указанных условий получения качественных соединений также связано с выбором способа сваркп. Наиболее эффективны в этом отношении сварка в атмосфере защитных газов и вакууме. Особенно важно правильно выбрать способ сварки при применении материалов, свойства которых ухудшаются при незначительном насыщении газами из окружающего воздуха. Например, для таких тугоплавких металлов, как титан, ниобий, а также для алюминия, магния и высоколегированных сталей предпочтительна дуговая сварка в атмосфере аргона высокой чистоты, а для молибдена и его сплавов — электронным лучом в вакууме. В то же время углеродистые и легированные конструкционные стали успешно сваривают всеми способами дуговой и электрошлаковой сварки. При соответствующем выборе режима и сварочных материалов получают сварные соединения, равнопрочные основному металлу при статических и динамических нагрузках.  [c.377]

Отличительной особенностью флюса ПНС является наличие в его составе молибдена, в результате легирования которым металла шва тормозится развитие полигониза-ционных трещин. В отличие от флюса ЖН-1 в флюс ПНС не вводят алюминии и титан, которые, хотя и уменьшают склонность к обра.зованию пор, являясь сильными рас-кислителями, не повышают сопротивляемость металла шва образованию горячих трещин и резко ухудшают отделимость шлаковой корки. Флюс ПНС в сочетании с проволокой Св-04Х19Н9 при сварке никеля с углеродистой и высоколегированной сталями обеспечивает хорошее формирование шва, стабильное горение дуги и отделимость шлаковой корки, отсутствие в металле шва нор, трещин и шлаковых включений. При этом обеспечиваются необходимое легирование металла шва марганцем, хромом и молибденом (табл. 5.13), а также стабильность и высокое качество сварного соединения (табл. 5.14).  [c.388]

Отжиг, характеризуемый медленным охлаждением вместе с печью или на воздухе) после нагржа и выдержки при некоторой температуре деталей и заготовок, проводят для снижения твердости и улучшения обрабатываемости резанием отливок, проката и поковок из углеродистых легированных сталей, а также для снятия остаточных напряжений в конструкциях после сварки или предварительной (черновой) обработки резанием. Для углеродистых и углеродистых легированных сталей проводят полный отжиг - нагрев до температуры, превышающей на 30—50 °С температуру превращения объемноцентрированной решетки железа в гранецентрированную кубическую решетку (обычно 800 - 900 °С), выдержку при этой температуре, медленное охлаждение до 400—600 С вместе с печью и далее на воздухе. Для низкоуглеродистых высоколегированных сталей 12Х2Н4А, 20Х2Н4А и др., используемых для изготовления зубчатых колес, применяют низкотемпературный (высокий) отжиг при температуре 650 — 670 °С и медленное охлаждение (чаще всего на воздухе). Используют и другие виды отжига, которые отличаются от высокого отжига температурой нагрева и скоростью охлаждения.  [c.273]

По назначению выделяют три группы флюсов для сварки углеродистых и легированных сталей, для сварки высоколегированных сталей, для сварки цветных металлов и сплавов. Внутри этих групп флюсы могут различаться по размеру зерна в зависимости от диаметра электродной проволоки чем больше диаметр проволоки, тем крупнее частицы флюса. По химическому составу различают кислые и основные флюсы в зависимости от соотношения соответствующих окислов в составе. По способу изготовления флюсы разделяют на плавленные и неплавленныс. Неплавленные флюсы изготавливают без плавления компонентов шихты. К ним относят флюсы керамические и изготовленные путем измельчения природных минералов. Керамические флюсы изготавливают из тех же компонентов, что и электродные покрытия, их замешивают на жидком стекле, а затем спекают и дробят. Недостаток таких флюсов - низкая прочность их зерен (много отходов, мелких фракций) и возможная неоднородность состава из-за разделения веществ с разным удельным весом при их перемешивании.  [c.142]

Сварные соединения, выполненные контактной и газовой сваркой, а также сварные соединения элементов из легированных сталей, выполненные электродуговой сваркой, контролируют макро-и микроисследованиями, а остальные — то.аько макроисследованием. Макро- и микроисследования контрольных сварных соединений элементов из углеродистой и низколегированной стали проводят не менее чем на одном образце (шлифе), а сварных соединений элементов из высоколегированной стали — не менее чем на двух образцах (шлифах). Допускается последовательное проведение макро- и микроисследований на одних и тех же шлифах. Макроисследования проводят визуальным осмотром протравленных образцов (шлифов) без увеличения или с применением лупы, микроисследования — с применением металлографического микроскопа на приготовленных образцах (микрошлифах) без травления и после травления.  [c.167]

Флюсы АН-348-А, АН-348-АМ, ОСЦ-45, ОСЦ-45М, АН-60 и ФЦ-9 предназначены для наплавки углеродистых и легированных сталей АН-20С, АН-20СМ и АН-20П—для наплавки высоколегированных сталей АН-26С, АН-26П, АН-26СП—для сварки жаропрочных сталей АН-8 и АН-22—для электрошлако-вой сварки.  [c.108]


Смотреть страницы где упоминается термин Сварка углеродистых, легированных и высоколегированных сталей : [c.367]    [c.117]    [c.343]    [c.191]    [c.327]    [c.67]    [c.200]    [c.53]    [c.289]    [c.65]    [c.462]    [c.60]    [c.309]   
Смотреть главы в:

Технология горячей обработки материалов  -> Сварка углеродистых, легированных и высоколегированных сталей



ПОИСК



84 легированной 89-91 углеродистой

Р углеродистое

Сварка высоколегированная

Сварка высоколегированных сталей

Сварка легированных и высоколегированных сталей

Сварка легированных сталей

Сварка углеродистых сталей

Сварка углеродистых, и легированных сталей

Сталь Сварка

Сталь высоколегированная

Сталь легированная

Сталь углеродистые

Сталя легированные

Сталя углеродистые

Углеродистая Сварка —



© 2025 Mash-xxl.info Реклама на сайте