Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Типы разрушения металлов

Рис. 3.7, Типы разрушения металлов Рис. 3.7, <a href="/info/48022">Типы разрушения</a> металлов

На рис. 49 приведены различные типы разрушений окисных пленок при их росте на металлах. Пузыри (рис. 49, а) образуются  [c.77]

Рис. 49. Типы разрушений окисных пленок при их росте на металлах Рис. 49. Типы <a href="/info/38313">разрушений окисных пленок</a> при их росте на металлах
Фото радиационный эффект, приводящий к образованию дополнительного количества носителей тока определенного типа, может ускорять коррозию металлов в результате облегчения катодного процесса или образования окислов р-типа (на Си, Ni, Fe), но может и замедлять коррозию металлов образованием окислов га-типа, снижая перенапряжение кислорода, т. е. облегчая протекание анодного процесса, не связанного с разрушением металла. Вообще влияние этого эффекта незначительно.  [c.371]

В данной главе рассматриваются хрупкое, вязкое и усталостное разрушения поликристаллического материала при кратковременном статическом и малоцикловом нагружениях. Разрушение поликристаллического металла при кратковременном статическом нагружении (т. е. при скорости деформирования I с ) является в большинстве случаев внутризеренным и в зависимости от температуры и характера НДС хрупким или вязким. Феноменологически первый тип разрушения сопровождается низкими затратами энергии в отличие от второго, для которого характерны значительные пластические деформации и, как следствие, высокая энергоемкость. Разрушение конструкционных материалов при малоцикловом нагружении также в основном связано с накоплением внутризеренных повреждений и развитием разрушения по телу зерна. Общим для рассматриваемых типов разрушений является также слабая чувствительность параметров, контролирующих предельное состояние материала, к скорости деформирования и температуре. Указанные общие особенности хрупкого, вязкого и усталостного разрушений послужили основанием для их анализа в одной главе.  [c.50]

Фреттинг-коррозия — еще одно следствие механических напряжений, которое может приводить к усталостному или коррозионно-усталостному разрушению металла. Это разрушение происходит на поверхности раздела двух контактирующих друг с другом тел, причем оба (или одно из них) металлические и слегка скользят друг относительно друга. Скольжение обычно имеет колебательный характер, например при вибрации. Продолжительное скольжение, когда один ролик вращается несколько быстрее контактирующего с ним, приводит к аналогичному разрушению. К тому же типу разрушения относятся коррозионный износ и окисление при трении.  [c.164]


Различают пластичное (вязкое) и хрупкое разрушение металлов. Характерная особенность пластичного разрушения — большая предшествующая пластическая деформация, составляющая десятки и даже сотни процентов относительно поперечного сужения или удлинения. Высокопластичные материалы разрушаются путем среза (соскальзывания) под действием максимальных касательных напряжений (рис. 13.38, а), менее пластичные получают разрушение типа конус-чашечка (рис. 13.38, б). Излом имеет матовый оттенок и волокнистый характер. Пластичное разрушение требует затрат большого количества энергии, поэтому при эксплуатации конструкций случается сравнительно редко.  [c.544]

К настоящему времени разработаны различные варианты структурных моделей накопления повреждений в зернистых (типа металлов), волокнистых и слоистых (типа синтетических структур и полимеров) материалов. Кроме моделирования различных типов разрушения - хрупкого, пластичного и т.д. на уровне физических процессов предлагается методика по прогнозированию остаточного ресурса машин и конструкций с учетом их структурной организации [21].  [c.131]

Для некоторых металлов характерно хрупкое разрушение. Для других оно не наблюдается. Один и тот же металл может разрушаться в зависимости от условий и хрупко, и вязко. Скол как разновидность хрупкого разрушения характерен главным образом для низких температур. Возможность такого типа разрушения исключается при достаточно высокой температуре деформации. Таким образом, происходит переход от хрупкого к вязкому состоянию, который обычно осуществляется в очень узком температурном интервале. За температуру перехода от вязкого к хрупкому разрушению принимают какую-либо заранее оговоренную температуру в интервале перехода. При температуре перехода энергия, необходимая для разрушения образца, резко уменьшается (рис. 227). Температура перехода от вязкого к хрупкому разрушению не является постоянной для каждого данного металла. Она чувствительна к ряду параметров, наиболее важными из которых являются степень чистоты металла и вели-  [c.429]

Хотя изложение материала ориентируется в основном на металлы е ОЦК-решеткой, представляет интерес сравнение механических свойств-металлов с различными типами решеток. Такое сравнение раскрывает многообразие факторов, определяющих свойства металлов, выделяет наиболее важные из них, способствует более глубокому пониманию отдельных деталей механизмов упрочнения и т. д. Так, при сравнительном анализе напряжений начала течения, параметров упрочнения и разрушения металлов и сплавов с наиболее распространенными ОЦК-, ГЦК- и ГПУ-решетками необходимо учитывать следующие факторы  [c.15]

Результаты исследований влияния разных покрытий на механические характеристики конструкционных материалов приведены в работах [И, 20—211. По современным представлениям о разрушении металла предполагается, что покрытие, препятствуя выходу дислокаций на поверхность, может в одних случаях упрочнять основу, а в других — разупрочнять. Эффект влияния покрытий на основной материал будет зависеть от условий, определяющих динамику дислокаций на поверхности раздела [22]. Результат же взаимодействия дислокаций с границей раздела основа — покрытие связан с двумя типами источников дислокаций — объемными и поверхностными. Объяснение роли покрытий в упрочнении сплавов с позиций дислокационных представлений об изменениях в структуре поверхностных слоев в процессе деформации дается и в работах [23, 24].  [c.21]

Процессы происходят и при других способах изготовления например, при изготовлении композита путем пропитки расплавленным металлом вместо механического сдвига, возможно, происходит высокотемпературная эрозия. Третий тип разрушения окисной пленки — ее растворение. Растворимость кислорода в алюминии исчезающе мала, но в таких металлах, как никель, она достаточно велика, чтобы привести к растворению окислов или обеспечить их сфероидизацию по растворно-осадительному механизму. Растворимость кислорода в таких металлах, как титан и ниобий, очень высока, и механизм растворения может создать условия для полного отсутствия окислов на поверхностях раздела.  [c.34]


Сейчас хорошо установлено, что не деформируемые пластически материалы не обнаруживают усталости обычного типа, свойственной металлам. Они подвержены коррозионному растрескиванию под напряжением в некоторой агрессивной среде, при котором может происходить рост трещины во времени при постоянном номинальном приложенном напряжении (см., например, [39]). Когда такие материалы подвергаются циклическому нагружению, распространение трещины в условиях коррозионного растрескивания происходит ступенчато в течение растяжения каждого цикла напряжения. Разброс при этом типе разрушения может быть вызван начальным распределением поверхностных дефектов, определяющих прочность хрупких материалов, что было обсуждено в разд. II, или развитием коррозионных ямок на поверхности около неоднородностей, таких, как включения и т. д.  [c.175]

Повышение длительной пластичности при температуре 640 С и выше не связано со сменой типа разрушения. В этом случае температурно-силовые условия соответствуют области в карты. Высокие температуры и длительность испытаний приводят к заметному развитию рекристаллизации в стали, которая понижает сопротивляемость матрицы деформированию и вызывает рост деформационной способности металла. Кроме того, при движении границ при рекристаллизации происходит залечивание части накопленных не-сплошностей и повышение деформационной способности металла.  [c.12]

Многолетними обширными экспериментальными исследованиями показано, что микроструктурное изучение металлов и сплавов непосредственно в нагретом или охлажденном состояниях позволяет получать весьма ценную информацию о взаимосвязи между строением, составом и свойствами исследуемых материалов. В частности, применение металлографического анализа при исследовании кинетики накопления повреждений и установлении структурных типов разрушения наряду с одновременной оценкой изменения уровня механических свойств является одним из научно-технических направлений, способствующих преодолению известного разрыва между работами металло-физиков и механиков, занимающихся проблемой прочности металлов.  [c.5]

Следующим типом коррозионно-механического разрушения является коррозионная усталость (разрушение металлов и сплавов под совместным воздействием периодического механического нагружения и агрессивных сред).  [c.45]

Методом фрактографического анализа исследовали поверхности разрушения образцов, испытанных при различных температурах как при растяжении, так и при усталостных испытаниях. Обсуждение полученных результатов и большое количество фрактограмм, снятых с образцов основного и сварного металла, опубликованы в работах [2—7]. В общем, преобладающим типом разрушения образцов из указанных нержавеющих сталей при перегрузках был вязкий ямочный излом, начинавшийся от небольших включений карбидов или мелкой пористости. На поверхностях разрушения усталостных образцов, испытанных для определения скорости роста трещины усталости, наблюдались зоны смешанного строения, включая мелкие и крупные усталостные бороздки, вязкий отрыв, скол и образование вторичных интеркристаллитных трещин.  [c.246]

Два типа разрушения поликристаллического металла. Поли-кристаллический металл в растягиваемом образце, как и монокристалл, разрушается либо от отрыва (хрупкое разрушение), либо от среза, завершающего пластическую деформацию ), в зависимо-  [c.257]

Износ пары сопряженных поверхностей зависит от их взаимодействия друг с другом (схватывания, механического зацепления), и поэтому повышение устойчивости против этого типа разрушения одного из компонентов пары трения приводит к снижению износа одновременно и другого компонента. Это положение находит экспериментальное подтверждение в результатах лабораторных испытаний и в результатах наблюдений за износом в службе деталей подвижного состава. С этой точки зрения применение покрытий деталей стойкими против схватывания металлами (например, покрытие хромом пальцев кривошипа) является мероприятием, активно снижающим износ сопряженных частей (например подшипников в дышлах).  [c.217]

Из двух типов электрохимической коррозии — равномерной, когда разрушение имеет место на всей поверхности, и локальной, когда разрушение металла происходит в отдельных местах,— наиболее опасна последняя. Локальная коррозия часто появляется внезапно, ее не удается своевременно распознать, и защита от нее затруднена. Различают несколько видов локальной электрохимической коррозии, из которых наиболее существенны межкристаллитная, коррозионное растрескивание, контактная, щелевая и питтинговая [3].  [c.22]

Разрушение деталей при интенсивных вибрациях — хотя и нежелательное, но понятное явление. Куда более коварным следствием вибрации является усталость металла. Такой тип разрушений неприятен тем, что ему обычно не предшествует какая-либо информация о надвигающейся опасности конструкция, успешно работавшая в режиме вибрации в течение некоторого времени, внезапно ломается.  [c.71]

Образующиеся под воздействием щелочи коррозионные повреждения имеют в основном местный характер (повреждения имеют вид неправильной формы) и располагаются на внутренней поверхности стенки со стороны топочной камеры. Щелочная коррозия относится уже к типу электрохимической она часто сопровождает химическую коррозию и усиливает ее. К электрохимической коррозии относятся процессы разрушения металла при воздействии на него коррозионно-активных газов в присутствии влаги.  [c.89]

Описанный тип коррозионно-термического разрушения имеет место при высоком уровне термических напряжений, достаточном для разрушения металла и окисной пленки. Характерным в этом случае является наличие тонких острых начальных трещин, обусловленных термическими напряжениями, и полости с округлыми краями.  [c.133]


Непосредственно с краем шва (один из очагов разрушения) металл имеет явно выраженные цвета побежалости, что хорошо видно под микроскопом (МБС-10) при увеличении в 10... 30 раз. Это позволяет предположить, что вблизи сварного шва существует зона провоцирующего нагрева, которая может быть причиной нарушения межкристаллитных связей в стали и привести к межкристаллитной коррозии (МКК), особенно у аустенитных хромоникелевых сталей не стабилизированных титаном или ниобием. По литературным данным [70, 81 и др.] для проявления склонности к МКК для сталей типа 18-10 (18-9)  [c.91]

Вид разрушения металла и тип образующейся стружки зависят от пластичности обрабатываемого металла, скорости и температуры резания.  [c.567]

Точечные дефекты бывают различных типов. Ионы, расположенные в узлах кристаллической решетки, совершают тепловые колебательные движения около положения равновесия. Среднее по всему кристаллу отклонение от положения равновесия определяется температурой. Но всегда имеются ионы, которые отклонились в данный момент от положения равновесия больше, чем другие. Отдельные ионы могут отклоняться настолько, что уже не возвраш аются обратно. Вместо иона в узле кристаллической решетки образуется пустое место — вакансия (рис. 8, а). Сместившийся из узла ион некотО рое время не находит свободного узла в кристаллической решетке и оказывается в промежутке между другими ионами. Такой дефект строения называется смещением (рис. 8, б). При повышении температуры количество вака 1 сий и смещений увеличивается. Вакансии играют важную роль в разрушении металлов при высоких температурах,  [c.16]

Рис. 98. Характер разрушения металла сварного шва типа Э-МФХ ХЗОО Рис. 98. <a href="/info/286696">Характер разрушения</a> металла сварного шва типа Э-МФХ ХЗОО
Вое типы разрушения металла т рубок можно было разделить на пять видов 1) тепловые пятна на поверхности стенок 2) участки Кристаллизованного маге-pиaлa 3) шероховатости 4) точечные отверстия 5) трещины в трубках. Тепловые пятна появлялись в области критического сечения камеры сгорания и представляли собой обесцвеченные темные участки поверхности металла. Металл в пятнах сильно науглерожен, но не окислен. Возникновение пятен объясняет ч пленочным кипением охладителя в трубках, обладающих худшей теплопровод ностью. Участки кристаллизованного материала возникали из-за отложений кар бида хрома (СгтСз) на огневой поверхности трубок. Хром выплавлялся из материала трубок — нержавеющей хромистой стали. Шероховатость вызывалась потерей металла с поверхности трубок и возникала наряду с точечными отверстия- мн и трещинами, которые образуются из-за того, что в результате науглероживания и азотирования пластичность металла снижается и при деформациях камеры, вызываемых температурными напряжениями и. перепадами давлений, она не может изменить свою форму и размеры в достаточной степени (при содержании углерода и азота л/0,1 /в и более).  [c.106]

Из приведенных материалов следует, что процессы на-водороживания и хрупких (второго типа) разрушений металла экранных труб протекают на фоне циклических колебаний температуры, связанных с поведением рабочей среды. Менее значительные измепепия температуры металла возможны и за счет действия пульсаций топочного факела. Поэтому при рассмотрении механизма хрупких повреждений экранных труб следует учитывать наряду с паводороживанием также и процессы коррозионно-термической усталости (см. 2.4).  [c.77]

Коррозионное растрескивание и коррозионно-усталостное разрушение металлов следует отличать от межкристаллитной коррозии металлов, протекающей без наличия механических напряжений в металле. Разрушения металлов типа коррозионного растрескивания и коррозионной усталости имеют много общего, поскольку характерным для обоих явлений является образование в металле трещин и отсутетвие на его поверхности значительных раз.ъеданий. Только изредка наблюдаются небольшие местные разъедания. Несмотря па большое количество исследований, механизм трещинообразования и развития трещин еще недостаточно ясен. Однако в большинстве исследований (Ю. Р. Эванс, Г. В. Акимов, Н. Д. Ромашов, А. В. Рябченков, Е. М. Зарецкий, В. В. Герасимов и др.) подтверждается электрохимический характер коррозии. Наряду с электрохимическим фактором на коррозионный процесс оказывают влияние и факторы механического и адсорбционного снижения прочности металла. В зависимости от преобладающего действия того или иного фактора характер коррозионного разрушения может изменяться.  [c.107]

Ble.3. Некоторые типы разрушений окиеннх пленок при их росте на металлах  [c.12]

При мягком нагружении циклически разупрочняющихся или стабильных металлов накапливаются пластические деформации, которые могут привести к двум типам разрушения — квазистати-ческому и усталостному. Квазистатнческое связано с возрастанием остаточных деформаций до уровня, соответствующего разрушению при однократном статическом нагружении. Разрушение усталостного характера связано с накоплением повреждений, образованием прогрессируюш,их трещин при существенно меньшей пластической деформации. Возможны и промежуточные формы разрушения, когда образуются трещины усталости на фоне заметных пластических деформаций.  [c.623]

Склонность меди к растворению кислорода при нагревании на воздухе приводит (при последующем нагревании в атмосфере водорода) к разрушению металла по границам зерен вследствие образования водяного пара. К этому типу разрушения особенно чувствительна литая черновая медь, содержащая ujO в свободном состоянии. Отмечены случаи разрушения меди в среде водорода уже при 400 °С. Так называемая бескислородная медь нечувствительна к данному типу разрушения, однако даже после непродолжительного нагревания на воздухе или в кислороде приобретает склонность к этому виду разрушения.  [c.203]

Обычно атмосферную коррозию классифицируют по степени увлажненности металлической поверхности и различают три типа сухую, влажную и мокрую. При сухой атмосферной коррозии на поверхноста металла пленки электролита отсутствуют, скорость коррозии при этом мала и не вызьшает существенных разрушений металла. Мокрая и влажная  [c.4]

Принцип однозначного соответствия является характеристикой устойчивости и неизменчивостн действия ведущего механизма эволюции открытой системы между двумя соседними точками бифуркации. Процесс эволюции и последствия его д( й-ствия в системе могут быть охарактеризованы однозначными признаками. С точки зрения разрушения металла неизменному механизму роста трещины однозначно соответствует неизменный вид или тип морфологии рельефа разрушения. При одном и том же механизме разрушения или процессе эволюции не могут быть разные параметры рельефа излома.  [c.121]

Вообще говоря, поле напряжений у вершины трещины в анизотропной пластине включает составляющие Ki п Ки- Однако в настоящее время испытания проводят, как правило, при ориентациях, исключающих одну из этих составляющих это прежде всего относится к ортотропным материалам, которые ориентируют таким образом, чтобы нагрузка была параллельна одной главной оси, а трещина—другой. В таких условиях значительная анизотропия, свойственная некоторым композитам, может привести к явлениям, не наблюдающимся у обычных металлов. Так, при растяжении образцов с направленным расположением упрочнителя часто наблюдают продольное расщепление (рис, 8). Его может и не быть, если поперечная и сдвиговая прочности достаточно высоки [5] тем не менее, этот возможный тип разрушения материалов необходимо учитывать. Кроме того, приложение одноосных растягивающих напряжений к образцу с поперечным расположением слоев приводит к появлению локальных межслоевых напряжений т,2у и нормальных напряжений Ozzt перпендикулярных плоскости образца [35], что показано на рис. 9. Ориентация и значения величин Он и Тгу зависят от порядка укладки слоев, упругих постоянных каждого слоя и величины продольной деформации. Значительные межслоевые растягивающие а г. и сдвиговые х у напряжения могут привести к расслаиванию [11, 35], которое опять-таки является особенностью анизотропных слоистых материалов. Последний пример относится к поведению материала с поверхностными трещинами. В изотропных материалах трещина распространяется, как правило, в своей исходной плоскости (рис. 10, а). У слоистых материалов прочность связи между слоями обычно мала, и они обнаруживают тенденцию к расслаиванию по глубинным плоскостям (рис. 10,6). Три этих простых примера приведены здесь, чтобы проиллюстрировать некоторые из различий между гомогенными изотропными материала-  [c.276]


Методика исследования хара гтеристик сопротивления деформированию и разрушению металла труб при малоцикловом нагружении. В настоящее время исследование малоцикловых характеристик конструкционных металлов проводится по разработанной методике с использованием специальных средств и аппаратуры [114, 234]. Широкое применение получает серийно выпускаемая автоматическая испытательная установка типа УМЭ-10Т, обеспечивающая нагружение образца в требуемом режиме (мягкое, жесткое, асимметрия). Испытания проводятся в условиях растяжения — сжатия при непрерывной регистрации параметров нагружения и деформирования. Установка имеет электромеханический привод с устройством выборки зазоров в винтовой паре, пять порядков скоростей перемещения активного захвата (от 0,005 до 100 мм/мин), возможность реверсирования с помощью системы автоматики двигателя электропривода при достижении как заданного усилия, так и заданной деформации. Машина имеет электронно-механическое силоизмерение (от резистивных датчиков, наклеенных на упругий динамометр), снабжена деформометром, обеспечивающим измерение продольной абсолютной деформации рабочей длины образца 2 мм. В необходимых случаях машина укомплектовывается деформометром для измерения поперечных деформаций. Усиленные сигналы (до 1000 1) регистрируются на диаграммном приборе барабанного типа в масштабе 50О X Х500 мм. Точность регистрации параметров нагружения 1—2%. Максимальная частота нагружения порядка 5 циклов/мин.  [c.155]

Применение ингибиторов. В настоящее время интенсивно ведется разработка эффективных ингибиторов коррозии —веществ, тормозящих или полностью предотвращающих процесс разрушения металлов в различных агрессивных средах. Но пока для защиты от КР еще не так много надежных ингибиторов. Хорошо себя зарекомендовало применение фосфатов для защиты котлового оборудования от КР. Для защиты коррозионно-стойких сталей типа 18-8 от КР в паро-воздушной среде можно применять добавки аммиака [221.  [c.75]

Иш-ибирование сред заключается во введении в них веществ, тормозящих коррозионное разрушение металлов. Ингибиторами называются вещества, которые при растворении в жидкой (или газообразной) агрессивной среде способны адсорбироваться из нее на поверхности металлов и снижать скорость их коррозии. Иш ибиторы могут существенно снижать скорость коррозии металлов, иногда даже в несколько сот раз. Большинство ингибиторов — это вещества смешанного типа, т. е., адсорбируясь на поверхности металла, они тормозят как анодный, так и катодный сопряженный процессы. Пассивирующие ингибиторы способствуют образованию на поверхности металла защитной 1шен-кн и переводу его в пассивное состояние [1,3].  [c.107]

Нержавеющие стали в целом находят весьма ограниченное применение в морских условиях. Успешное их применение основывается на контроле окружающей среды с целью поддержания пассивности металла пли же подразумевает защитные меры, препятствующие местной коррозии. Нержавеющие стали обычно стошш в морских атмосферах, где на от крытой незащищенной поверхности сохраняется пассивная пленка. Благоприятны для поддержания пассивности и условия в быстром потоке морской воды. В спокойной морской воде причиной разрушения металла часто является местная коррозия, в частности ппттинг. Наблюдается также коррозионное растрескивание под напряжением. Однако прп правильном выборе типа сплава, а также режимов упрочнения п старения высокопрочные нержавеющие стали стойки в морских атмосферах.  [c.57]

Наблюдаемый характер разрушения после ЭЛС, вероятно, следует объяснить неблагоприятным распределением остаточных налряг-жений, которые велики при сварке однофазных титановых сплавов типа ПТ-ЗВ [ 2j, Другая возможная причина разрушения - повыше--ние в 5-10 раз концентрации водорода в областях разрушения металла, обнаруженное в исследовании Сб1. Вероятно и совмеотное действие обоих факторов.  [c.15]

Описанный тип разрушения котельного металла, получивший в литературе название ракушечной коррозии, до сих пор не был достаточно изучен. Высказанные многочисленные точки зрения о причинах, вызывающих подобную коррозию, носят противоречивый характер на основании их нельзя сделать каких-либо практических выводов о способах ее предупреждения. Согласно Ханкин-сону, причиной подобных повреждений котельного металла является агрессивное воздействие котловой воды на металл, лишенный защитной пленки при кислотных промывках котла, практикующихся на некоторых электростанциях. Однако появление подшламовой коррозии на ряде электростанций, не применяющих подобных способов удаления накипи, опровергает это утверждение.  [c.211]

Он позволяет описать момент образования границ типа межзе-ренных во время пластической деформации, при рекристаллизации и полигонизации, при соединении металлов во время совместной деформации, а также разрушение металла. Критерии разрушения для простого и сложного нагружения дают возможность учесть физические свойства металла, особенности условий деформации, а также наличие в металле слабого звена.  [c.306]

Никель-хромовые сплавы подвержены науглероживанию. В работе ( 68] отмечается, что сплавы типа Х20Х80 науглероживаются уже при 950°С с образованием карбидов хрома, преимущественно по границам зерен. При выдержке содержание хрома в сплаве может снизиться до 10 - 12 %, а на поверхности сплава, под окалиной, содержание хрома падает еще ниже. В экзотермической атмосфере при температурах выше 900°С на никель-хромовых сплавах развивается межкристаллитное окисление с образованием окисла хрома по границам зерен, приводящее к быстрому разрушению металла. Это явление, получившее название зеленая гниль , делает нихромы непригодными для эксплуатации в атмосфере экзогаза. Более устойчив в этих условиях ферронихром марки Х15Н60-Н. Стойкость нихромов в углеродсодержащих атмосферах зависит от легирования. По данным Ф.Сибли легирование кремнием, железом, кобальтом, марганцем и ниобием заметно повышает срок  [c.110]


Смотреть страницы где упоминается термин Типы разрушения металлов : [c.71]    [c.48]    [c.130]    [c.202]   
Смотреть главы в:

Механические испытания и свойства металлов  -> Типы разрушения металлов



ПОИСК



Коррозия металлов типы коррозионных разрушени

Разрушение металла

Разрушение по типу

Разрушение, впадины, типы металлы с покрытием, нанесенным ацетиленовой горелкой



© 2025 Mash-xxl.info Реклама на сайте