Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы, основанные на применении вариационных принципов

МЕТОДЫ, ОСНОВАННЫЕ НА ПРИМЕНЕНИИ ВАРИАЦИОННЫХ ПРИНЦИПОВ  [c.253]

Другой метод основан на применении вариационного принципа, рассмотренного в конце разд. 6 гл. IV. Берется пробная функция Я, содержащая несколько параметров, которые подбираются так, чтобы минимизировать функционал /(Я) в (IV. 6.28) в результате получается аппроксимация для Я. Ценность метода повышается тем обстоятельством, что значение /(Я) при Н = к можно связать с коэффициентами переноса действительно, из (IV. 6.28) при Гг = к (так что Иг = д) находим  [c.274]


В том случае, когда при записи физических соотношений теории вязкоупругости используется гипотеза о постоянстве коэффициента Пуассона, появление указанных трансцендентных функций не усложняет решение задачи вязкоупругости. В противном случае более целесообразными для решения поставленной задачи могут оказаться другие методы, например основанные на применении вариационных принципов.  [c.353]

Для исследования гармонических упругих волн в композиционной среде Кон с соавторами [37] использовали методы, основанные на теории Флоке и Блоха. Этот подход весьма подробно рассмотрен также в статье Ли [40]. Основная идея всех этих работ состоит в применении вариационных принципов в интегральной форме к отдельной ячейке композита. Эти вариационные принципы дают способ определения фазовых скоростей и распределения напряжений в волнах Флоке, распространяющихся в композиционной среде без изменения формы при переходе от ячейки к ячейке. Различные авторы использовали как принцип минимума потенциальной энергии деформации, так и принцип максимума дополнительной работы.  [c.382]

Вариационные принципы. Вариационные принципы Лагранжа и Кастильяно для задач ползучести являются, очевидно, простой перефразировкой соответствующих принципов для нелинейно упругого тела, поскольку исходная гипотеза состоит в допущении зависимости потенциального типа между напряжениями и деформациями или скоростями деформации. Систематическое развитие приближенных методов, основанных на принципе Кастильяно, принадлежит Л. М. Качанову. При степенном законе установившейся ползучести с возрастанием показателя п в ряде случаев распределение напряжений мало отличается от того, которое соответствует предельному состоянию идеального жестко-пластиче-ского тела. Таким образом, вводится понятие о предельном состоянии ползучести напряжения о / для этого состояния находятся по схеме жестко-пластического тела, причем предел текучести зависит от характера нагрузки. Приближенные значения скоростей находятся прямым применением теоремы Кастильяно. Более точные результаты получаются, если представить компоненты напряжения в виде  [c.134]

Вариационная постановка плоской задачи, основанная на принципе минимума потенциальной энергии, обстоятельно рассмотрена в книге [35]. Отметим, что при определении температурных напряже ний во многих случаях также эф ктивно применение вариационных методов (И, 30].  [c.328]


Основные дополнения отразили развитие отдельных разделов, интерес к которым повысился со времени появления в 1951 г. второго издания. В главах 3 и 4 введен анализ влияния концов и теория собственных решений, связанных с принципом Сен-Ве-нана. Ввиду быстрого роста приложений дислокационных упругих решений в науке о поведении материалов, эти разрывные в смещениях решения излагаются более подробно (теория краевых и винтовых дислокаций в главах 4, 8, 9 и 12). К главе 5 добавлены вводные сведения о методе муара с иллюстрацией его применения на практике. Изложение понятия об энергии деформации и вариационных принципов проведено в трехмерном случае и включено в главу 9, что дало основу для новых разделов по термоупругости в главе 13. Обсуждение использования комплексных потенциалов для двумерных задач пополнено группой новых параграфов, основанных на хорошо известных теперь методах Н. И. Мусхелишвили. Этот подход несколько отличается  [c.12]

Оба описанных способа основываются на дифференциальных уравнениях теории упругости, но ими не исчерпываются возможные подходы к решению задач. Еще одна возможность заключена в использовании минимальных энергетических принципов и в применении основанных на них прямых методов решения вариационных задач.  [c.126]

Интенсивное исследование численных методов решения вариационных задач оптимального управления и применение для этой цели ЭВМ началось в пятидесятых годах и развивалось, как уже отмечалось выше, параллельно с развитием общей математической теории оптимальных процессов. Основные усилия прежде всего были направлены на создание методов, использующих необходимые условия оптимальности в форме уравнений Эйлера — Лагранжа. Основные трудности, возникающие здесь, были уже кратко охарактеризованы выше в 8. Напомним их здесь еще раз, остановившись подробнее на примере краевой задачи (6.6) — (6.7). На основании принципа максимума дело сводится к следующей двухточечной задаче  [c.198]

И. В. Андрианов и А. А. Дисковский [66] изложили метод исследования влияния вырезов на собственные частоты колебаний прямоугольных пластин, основанный на применении вариационного принципа Рейсснера. В качестве примера рассмотрены собственные колебания квадратной пластины с центральным круговым вырезом. Определению собственных форм и частот колебаний прямоугольных пластин с вырезами, жёстко защемленных по внешнему и внутреннему контурам, посвящено исследование Л. В. Курпы [67]. Описанная ею задача решена структурным методом, в основе которого лежит использование -функций. Данные в работе примеры относятся к расчету собственных форм и частот колебаний для прямоугольных и квадратных пластинок с центральным круговым и квадратным вырезом, а также со смещенным круговым отверстием для прямоугольной пластинки.  [c.299]

В этот очерк не включены приближенные способы решения, основанные на применении вариационных принципов (методы Ритца — Тимошенко, Галеркина, Канторовича). Практика их применения развита в монографии Л. С. Лейбензона (1951). Большое число исследований посвящено изучению сходимости вариационных методов и оценкам погрешности (в ряде случаев двусторонним) приближенных решений (С, Г. Михлин, М. Г. Слободянский).  [c.17]

Задачи устойчивости типичны для тонких и тонкостенных тел. Решения этих задач для стержней, пластин и оболочек строятся обычно на основе приближенных уравнений, в которых используются некоторые кинематические и динамические гипотезы. Имеется несколько путей для получения этих уравнений. Первый, наиболее ранний способ состоит в непосредственном рассмотрении форм движения (равновесия), смежных с невозмущенным. При этом ищется некоторая приведенная нагрузка, которая вводится в уравнение невозмущенного движения. Все рассуждения носят наглядный характер однако в достаточно сложных задачах эта наглядность оказывается обманчивой. Другой путь состоит в использовании нелинейных уравнений соответствующих прикладных теорий. Линеаризуя последние в окрестности невозмущенного движения, получим искомые уравнения. В теории оболочек этот путь использовался X. М. Муштари (1939), Н. А. Алумяэ (1949), X. М. Муштари и К. 3. Галимовым (1957), Н. А. Кильчевским (1963), В. М. Даревским (1963) и другими авторами. Однако в нелинейной теории имеется еще меньше единства взглядов на то, как должны записываться основные уравнения. Следо вательно, идя по этому пути, мы лишь смещаем все трудности в другую, еще менее согласованную область. Третий путь состоит в использовании общих уравнений теории упругой устойчивости (В. В. Новожилов, 1940, 1948). Метод, основанный на соответствующем вариационном принципе, был применен  [c.332]


Опишем теперь вкратце предложенный Персивалем [328, 330, 331 ] метод нахождения инвариантного тора, когда он существует. Метод основан на некотором вариационном принципе, похожем на примененный в п. 2.66 в случае периодических траекторий. Здесь также удобно использовать уравнения Лагранжа [330, 331, 228].  [c.287]

Вариациопные принципы и основанные на них вариационные методы играют важную роль в механике деформируемого твердого тела как в части получения дифференциальных уравнений задач, так и в части построения приближенных решений. К методам получения прнближеш1ых решений относятся методы Ритца — Тимошенко, Канторовича — Крылова, Бубнова — Галеркина и др. В основе всех этих методов лежат излагаемые ниже вариационные принципы в той или иной их комбинации. Хотя получение приближенных решений на основе этих методов при наличии мощных ЭВМ постепенно отходят на второй план, они все еще находят применение. В процессе применения ЭВМ на подготовительном этапе есть необходимость задачу интегрирования систем дифференциальных уравнений свести к задаче решения систем алгебраических уравнений. В этой части вариационные методы завоевывают все более и  [c.186]

Метод основан на комбинации принципов вариационного исчисления-с частными производными и может рассматриваться математиками как особая ветвь алгебры, которая может быть названа исчислением главной функции, потому что во всех важных приложениях алгебры к физике и в очень широком классе чисто математических вопросов этот метод сводит определение многих взаимно связанных функций к отысканию и изучению главного или центрального соотношения. В приложениях этого метода к динамике (прежде этот метод был применен к оптике) профессор Гамильтон открыл существование главной функции, которая, если ее форма полностью известна, дает по определении ее частных производных все первые и все конечные интегралы известных уравнений движения. Профессор Гамильтон придерживается мнения, что математическое объяснение всех явлений материи, отличных от жизненных явлений, будет окончательно найдено в зависимости от свойств системы отталкивающихся или притягивающихся точек. И он думает, что те,, кто не одобряет его мнения во всей его общности, могут все же признать при современном состоянии науки свойства таких систем более важными, чем какая-либо другая область приложения математики к физике. Он, таким образом, считает фундаментальной проблемой динамики определить Зп прямоугольных координат или других характеристик положения свободной системы притягивающихся и отталкивающихся точек как функции времени , включающих, следовательно, 6п начальных постоянных, которые зависят от начальных условий движения, и включающих, кроме того, п других констант, называемых массами, которые измеряют на стандартном расстоянии притягательные и отталкивательные действия (energies). Обозначая эти п масс через т , т ,..., т и их Зп прямоугольных координат — через Xi,y ,Zi,. .., х , у , и, следовательно, 3 компонентов ускорения или вторых производных этих координат по времени — через х , У , . ..  [c.284]

Принцип максимума Понтрягина. Обобщением вариационного метода Лагранжа является метод, основанный на принципе максимума Понтрягина [256]. Он был разработан применительно к задачам теории оптимального управления, однако то обстоятельство, что он дает возможность искать оптимальные решения среди более широкого класса функций, делает его применение перспективным и к решенпю задач акустической оптимизации машинных конструкций [207, 346, 355, 356]. Метод состоит в следующем.  [c.266]

Наиболее часто в практике используют расчеты, основанные на вариационном принципе Лагранжа. Выше, в 5 этот принцип был использован для вывода фференциального уравнения изгиба пластины и граничных условий. Ниже будет рассмотрено применение некоторых прямых методов вариационного исчисления (метода Ритца, метода Бубнова—Галеркина и метода Канторовича).  [c.96]

При изложении основных уравнений теории упругости мы не останавливались иа вариационных принципах и основанных на них методах приближённого решения частных задач теории упругости. Эти методы получили применение к рассмотрению некоторых пространственных задач в работах М, М. Филоиенко-Бородича Задача о равновесии упругого параллелепипеда прн заданных нагрузках на его гранях (Прикл. матем. и мех. 15, №2, 1951). Две задачи о равновесии упругого параллелепипеда ) (там же, № 5, 1951), Некоторые обобщения задачи Ляме для упругого параллелепипеда (там же 17, № 4, 1953) и Г. С. Шапиро Некоторые задачи о деформациях стержней переменного сечения (там же 17, № 2, 1953).  [c.70]


Смотреть главы в:

Численные методы в теории упругости и пластичности  -> Методы, основанные на применении вариационных принципов



ПОИСК



Вариационные методы применения

Вариационные принципы и их применение

Вариационный Применение

Метод вариационный

Методы вариационные — Применени

Применение Принцип

Применение метода

Принцип вариационный

Принцип метода

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте