Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость пластического деформирования

Рассматриваемые в книге технологические задачи близки ко многим задачам в области прочности деталей машин и элементов конструкций. Экспериментальные методы исследования пластических деформаций деталей машин и обрабатываемого материала имеют много общего. Результаты исследований устойчивости пластического деформирования и деформируемости могут в некоторых случаях быть основой для определения разрушающих нагрузок.  [c.6]


В теории пластичности получили некоторое развитие методы оценки устойчивости упругопластического равновесия элементов конструкций, основанные главным образом на критериях устойчивости, хорошо зарекомендовавших себя в упругой области. Однако применение этих критериев при решении технологических задач обычно сопряжено с большими-математическими трудностями, обусловленными тем, что при обработке металлов давлением и резанием возникают большие деформации и перемещения. В связи с этим получила распространение инженерная теория устойчивости пластического деформирования, исходящая из приближенных критериев.  [c.104]

Во-вторых, при испытании многих материалов на растяжение разрушению предшествует потеря устойчивости пластического деформирования, выражающаяся в образовании шейки и сопровождающаяся аномальным возрастанием пластичности. При общей тенденции уменьшения пластичности с возрастанием т] очень часто оказывается, что пластичность, определяемая как деформация в шейке разрушенного образца, выше пластичности при кручении. Поэтому нецелесообразно использовать пластичность при осевом растяжении в качестве параметра уравнения, аппроксимирующего диаграмму пластичности.  [c.141]

В частном случае для материала, обладающего изотропным разупрочнением kp < 0), устойчивое пластическое деформирование возможно, если kp kp . В предельном случае kp К идеально пластичного материала с постоянным пределом текучести, установление однозначной связи da и возможно лишь при наличии дополнительных условий.  [c.130]

В заключение отметим, что при испытании трубчатых образцов из пластичных материалов потеря устойчивости пластического деформирования зависит от ориентации главных напряжений по отношению к образующей. Так, по данным работы [97], предельные деформации при одноосном осевом растяжении могут превышать предельные деформации при одноосном растяжении в тангенциальном направлении, что экспериментально подтверждает влияние формы образца на деформационную способность испытываемого материала.  [c.234]

Существует, однако, проблема, в которой введение эффекта упрочнения принципиально необходимо, — это проблема устойчивости пластического деформирования. Использование идеально пластической модели приводит здесь, как правило, к тривиальному выводу о неустойчивости.  [c.9]

Низкотемпературная термомеханическая обработка (НТМО) заключается в интенсивной пластической деформации стали в температурном интервале устойчивого аустенитного состояния. Процесс (рис. 86, й) состоит в нагреве до 900—1000°С, быстром охлаждении до 450 —550"С, многократном пластическом деформировании при этой температуре с большой степенью деформации (до 90%), закалке на мартенсит и отпуске при 250—400°С.  [c.174]


При использовании полученного соотношения (2.8) для анализа исчерпания нес щей способности оболочковых конструкций по критерию потери устойчивости их пластического деформирования необходимо подставлять в данное выражение значения (3q 5, отвечающие реальным свойствам материала (например, Ро 5, полученные по методике /53/).  [c.96]

Рассмотренные принципы синергетики и основные простейшие подходы описания эволюции открытых систем полностью применимы к металлическим материалам, испытывающим различные эксплуатационные воздействия. Наличие в материале основного аккумулятора энергии в виде пластически деформированной зоны предразрушения до зарождения трещины и в вершине трещины при ее распространении обеспечивает устойчивое поведение материала вплоть до начала нестабильности. Сохранение устойчивого поведения материала при внешнем воздействии на стадии распространения трещины в течение значительного периода эксплуатации конструкции служит основной причиной тщательного анализа роли внешних условий воздействия, влияющих на устойчивость системы, что может вызвать процесс быстрого окончательного разрушения. На базе синергетического анализа появляется возможность управлять процессом эволюции состояния металла или элемента конструкции в условиях многопараметрического эксплуатационного воздействия и поддерживать устойчивость его поведения с развивающейся трещиной (поведения системы), по крайней мере, в период между двумя соседними эксплуатационными проверками с помощью методов неразрушающего контроля.  [c.127]

Выявленная последовательность сигналов АЭ в цикле нагружения, а также учет эффекта ротационной пластической деформации приводят к рассмотрению формирования усталостных бороздок не в полуцикле восходящей ветви нагрузки, а в полуцикле нисходящей ветви нагрузки. Накопленная энергия упругой деформации в большей части объема материала при максимальном раскрытии берегов трещины стремится закрыть трещину после перехода к полуциклу снижения нагрузки. Этому препятствует зона пластической деформации, размеры которой существенно возрастают в полуцикле растяжения (восходящая ветвь нагружения). Действие сжимающих сил при разгрузке образца стремится нарушить устойчивость слоя материала перед вершиной трещины в районе зоны пластической деформации, и это приводит к возникновению дислокационной трещины (см. рис. 3.26), а далее и к созданию свободной поверхности. Происходит отслаивание пластически деформированной зоны с наиболее интенсивным наклепом материала от остальной части зоны. При этом в случае существенного возрастания объема зоны в связи с возрастанием скорости роста усталостной трещины отслаивание характеризуется разрушением материала не по одной, а по нескольким дислокационным трещинам, что характеризуется формированием более мелких бороздок на фоне крупной усталостной бороздки.  [c.168]

Момент потери устойчивости при пластическом деформировании материала определяется его модулем упрочнения. Действительно,  [c.87]

Когда кривая сГг(ег) всюду выпуклая к оси Ъг, как в идеальной жидкости без фазовых переходов, ударный фронт всегда устойчив и включает всю фазу сжатия в ударной волне. Наличие на кривой сжатия выпуклого к оси Ог участка (области перегиба) нарушает устойчивость ударной волны. Вследствие этого переход от упругого к упруго-пластическому деформированию материала, нарушающий условие устойчивости ударной волны, приводит к разделению фронта волны на упругий предвестник и следующую за ним ударную пластическую волну, распространяющиеся со скоростями соответственно ао н D. При низкой интенсивности ударной волны сопротивление сдвигу оказывает существенное влияние на ее распространение и, следовательно, при выполнении расчетов необходим учет вязкопластического поведения материала при деформации в ударной волне. Пренебрежение эффектами, связанными со сдвиговой прочностью, может привести к значительности погрешности в расчетах [161, 245].  [c.163]

Неустойчивая структура пластически деформированного металла стремится освободиться от искажений кристаллической решетки и запаса остаточной энергии и перейти в устойчивое состояние. Однако при комнатной температуре подвижность атомов недостаточна для упорядочения строения кристаллической решетки. При по-30  [c.30]


Механико-термическая обработка состоит из пластического деформирования с последующей выдержкой при температуре деформирования или при более высокой температуре с целью получения устойчивой субструктуры. Максимальный эффект МТО получается при малых степенях пластической деформации — порядка 0,5—2%.  [c.102]

При пластическом деформировании металлов нужная форма заготовки достигается перемещением частиц металла в новое положение при условии их устойчивого равновесия. При этом первоначальная масса металла, претерпевшего формообразования, остается постоянной. Так как процесс деформирования совершается с непременным приложением растягивающих или сжимающих сил, то плотность материала при этом несколько изменяется, как правило, увеличивается. Особенно это заметно при начальных стадиях обработки давлением исходного литого материала. При деформировании устраняются неплотности, возникшие в металле в процессе затвердевания из жидкой фазы. При дальнейшем деформировании, а также при деформировании металла после прокатки изменение плотности весьма незначительно. Более того, при деформировании холодного металла происходит интенсивное внутри- и межзеренное скольжение, механическое разрушение кристаллитов, что приводит к появлению микропустот в объеме металла и уменьшению плотности (0,1—0,2%).  [c.392]

Неустойчивая структура пластически деформированного металла стремится освободиться от искажений кристаллической решетки и запаса остаточной энергии и перейти в устойчивое состояние. Но при комнатной температуре подвижность атомов недостаточна для упорядочения строения кристаллической решетки. При повышении температуры увеличивается подвижность атомов и происходят процессы, возвращающие металл в устойчивое состояние.  [c.113]

Рассмотрение поведения деформируемого твердого тела с позиций физики и механики неравновесных состояний выдвигает на первый план определение диссипативных свойств материала в точках неустойчивости системы, отвечающих самоорганизации диссипативных структур. Параметры, контролирующие точки перехода "устойчивость—неустойчивость— устойчивость" при деформировании материалов несут фундаментальную информацию о его диссипативных свойствах и фрактальной природе пластической деформации и разрушения.  [c.159]

Островский А.А. К эксперимеитатьному обоснованию критерия потери устойчивости пластического деформирования тонкостенных элементов И Проблемы прочности, — 19HI — № 8. — С. 57—58.  [c.265]

Цель технологических испытаний — оценка предельной деформатнвиости и пластичности материалов в условиях однократных или повторных нагружений. При испытаниях на загиб или закручивание определяют предельный угол, ири котором образуются трещины. При испытаниях на выпучивание находят максимальную деформацию при потере устойчивости пластического деформирования или при образовании трещины.  [c.28]

Практическая важность проблемы устойчивости пластического деформирования обусловлена в первую очередь тем, что в результате ее решения удается оценить предельную (или критическую) деформацию при многочисленных процессах обработки металлов давлением в зависимости от напряженного состояния и свойств материала. Превышение этой деформации приводит к потере устойчивости пластического деформирования, выражающейся в образовании складок, хлопунов, местных утонений, по которым затем происходит разрыв материала, и т. д., и является часто причиной брака, в особенности при листовой штамповке.  [c.104]

В последнее время опубликован ряд работ [46, 31], в которых при исследоваиии устойчивости пластического деформирования исходят из критерия, согласно которому пластическое деформирование устойчиво, если положительна работа добавочных нагрузок  [c.105]

При экспериментальной проверке рассматриваемых критериев устойчивости пластического деформирования испытывали образцы из стали ЗОХМА, ШХ15, латуни Л62 и меди М1. Образцы каждого материала были изготовлены из одного прутка. После механической обработки их подвергали рекристаллиза-ционному отжигу.  [c.110]

Под сверхпластпчностью обычно понимают нелинейно-вязкое поведение ряда сплавов, обладающих сверхтонкой зернистой макроструктурой. Для состояния сверхпластичности, наблюдаемого в сравнительно узком интервале температур, близких к половине температуры плавления сплава по абсолютной шкале, характерны высокий уровень скоростного упрочнения, низкое сопротивление деформации при малых скоростях последней, высокая устойчивость пластического деформирования в определенных интервалах скоростей деформирования, вследствие чего равномерное удлинение при испытании на растяжение в отдельных случаях достигает 2000%. Последние два обстоятельства особенно важны с технологической точки зрения. Предложен ряд процессов обработки металлов в состоянии оверхпластичности, некоторые из них уже внедрены в производство.  [c.122]

При фасонировании заготовки (рис. 1, д), которое следует совмещать с калибровкой, получают форму, которая способствует течению металла во все элементы полости штампа при наименьших нагрузках на инструмент, а также минимальной суммарной деформации, как локальной, так и по всему объему заготовки. Фасонироиа-ние заготовки должно обеспечивать Возможно более равномерную деформацию на штамповочных операциях, исключить возможность снижения устойчивости пластического деформирования, локализации деформации, следствием которой может явиться разрушение.  [c.97]

Значительное увеличение пластичности и максимальных напряжений при гидростатическом давлении по сравнению с их значениями при простом сжатии наблюдалось при испытании меди, алюминия и цинка [561 ]. Испытания углеродистой стали (С — 0,5%) при давлениях до 2400 кПсм , проведенные В. А. Гладков-ским [80], показали, что наложение гидростатического давления повышает предел текучести стали. Вследствие быстрой потери устойчивости пластического деформирования (локализация деформации и образование шейки) величина равномерной деформации при повышении давления уменьшается, хотя предел прочности стали остается без изменений. Значительно больший эффект оказывает шаровой тензор на прочностные и пластические свойства хрупких материалов.  [c.103]


К самопроизвольным процессам, которые приводят пластически деформированный металл к более устойчивому состоянию, относятся снятие искажения кристаллической решетки и другие В1нутризеренные процессы и рост зерен. Первое е требует высокой температуры, так как при этом происходит незначительное перемещение атомов. Ул<е небольшой нагрев (для железа 300— —400°С) снимает искажения решетки (как результат многочисленных субмн кролроцессов — уменьшение плотности дислокаций в результате их взаимного уничтожения, так называемая аннигиляция, слияния блоков, уменьшение внутренних напряжений, уменьшение количества вакансий и т. д.). Линии на рентгенограммах деформированного металла, размытые вследствие искажений решетки и нарушений се правильности, вновь становятся четкими. Снятие искажений решетки в процессе нагрева деформированного металла называется возвратом, или отдыхом. В результате этого процесса твердость и прочность несколько понижаются (па 20— 30% по сравнению с исходными), а пластичность возрастает.  [c.86]

Закономерности разрушения материала при длительном нагружении достаточно хорошо могут быть описаны с помощью разработанной физико-механической модели межзеренного разрушения, которая базируется на математическом описании процессов зарождения и роста пор, обусловленного как пластическим деформированием, так и диффузией вакансий, а также на введенном в гл. 2 при анализе внутризеренного вязкого разрушения понятии — потере микропластической устойчивости. Модель позволяет прогнозировать долговечность при статическом и циклическом длительном нагружениях элементов конструкций в условиях объемного напряженного состояния и переменной скорости деформирования. В частности, с помощью указанной модели могут быть описаны процессы залечивания межзе-ренных повреждений при сжатии и рассчитана долговечность в условиях циклического нагружения при различной скорости деформирования в полуциклах растяжения и сжатия.  [c.186]

При 17 = 0,5 возможна реализация как первого, так и второго механизма нестабильного развития пластического деформирования и разрушения рассматриваемых конструкций. Следу ет также отметить, что процесс потери пластичесжой устойчивости оболочки в виде выпучины вдоль ее образу ющей происходит при более низких значениях предельных равномерных деформаций Б,, р и критических напряжений а р, чем анаюгичный процесс. об> словленный развитием шейки в кольцевом ссчении  [c.93]

Для оболочек с мягкими прослойками промежуточных размеров (Кр < к < к ) анализ исчерпания несущей способности на основании критериев потери устойчивости их пластического деформирования в процессе нагр> жения существенно усложняется. Фактически процедура учета описанных выше явлений, связанных с эффектом контактного упрочнения мягких прослоек, сводится к предварительному определению кривых v /(k) и S k) либо на основании обработки экспериментальных данных, либо расчетным путем по методикам /77/, после чего по соответ-ств тощим зависимостям /88/ находятся параметры Ер и т, позволяющие оценить предельное состояние конструкций по критериям потери пластической устойчивости. Однако, как будет показано несколько ниже, в целях прощения расчетньЕх методик по оценке нес> щей способности оболочковых конструкций можно пренебрегать данной процедурой уточнения процесса пластической неустойчивости конструкции в процессе их нагружения вследствие ее незначительного влияния на конечный результат.  [c.95]

В США. Сплавы А1С0А 750 применяются в состояниях мягком, термически обработанном или пластически деформированном — с целью повышения устойчивости вкладыша к проворачиванию (повышение предела текучести сплавов и соответственно этому критической температуры , потери натяга монометаллическими вкладышами при монтаже в стальную или чугунную постель).  [c.122]

Экспериментально бьши установлены противопиттинговые защитные свойства СОП. В случае использования образцов, покрытых СОП, выкрашивание не наблюдалось даже при значительно большем (в 30 раз) числе циклов и при контактных напряжениях, превышающих почти вдвое предел вьшосливости для образцов при отсутствии СОП. Следует отметить более высокий класс шероховатости контактирующих поверхностей при возникновении СОП и меньшую толщину пластически деформированного приповерхностного слоя. Сдвиговые деформации сосредотачиваются в этом случае в тонком слое СОП, которые также защищают поверхность от проникновения смазочной среды в микротрещины. Реакционная способность про-тивоизносных присадок зависит от их термической устойчивости, стабильности при повышенных температурах. Адсорбционные свойства молекул присадок и их химическая активность при образовании химически модифицированных слоев являются определяющими при оценке противоизнос-ных свойств масел с присадками. Присадки, имеющие высокую теплоту адсорбции и образующие прочные поверхностные пленки, являются опти-  [c.171]

Но не только стержни могут потерять устойчивость. В теории устойчивости рассматриваются многие сложные задачи об устойчивости целых конструкций и отдельных их элементов — арок, рам, оболочек, пластин и т. п. Особый интерес представляют задачи об устойчивости подобных конструкций и их элементов при действии на них динамических нагрузок ), а также исследования устойчивости в процессе упруго-пластического деформирования и при упруго-вязкой деформации (см. главу XXXII).  [c.487]

Субструктура может образоваться, например, в процессе ползучести в результате процесса полигонизации, при нагреве пластически деформированного металла или в результате полиморфного превращения. Рост субзерен без изменения их ориентации в пределах зерна определяет сущность процесса рекристаллизация на месте (in situ), что приводит к увеличению плотности дислокаций в субграницах и приближению их к устойчивым среднеугловым. Образование дислокационных структур границ (дислокационных стенок) при нагреве связано, как указывалось ранее, с уменьшением упругой энергии. Образование субграниц при пластической деформации в результате перестройки дислокаций в полосах скольжения (путем поперечного скольжения или переползания) также приводит к уменьшению энергии. Этот процесс образования субструктуры в результате пластической деформации наблюдается в неталлах с большой энергией дефекта упа.ковк и (т. е. в условиях, когда облегчается перестройка дислокации).  [c.80]

Поверхностный наклеп конструкций производили пневматическим инструментом с одно- или многобойковьш упрочнителем. Элементы конструкций испытывали на усталость при различных условиях нагрузки до и после поверхностного наклепа. Температура испытаний -f20 и —30° С. Полученные результаты показали, что поверхностный наклеп существенно повышает сопротивление усталости в условиях испытания как при нормальной, так и при пониженной температуре. При отрицательной температуре эффект оказался более значительным, чем при положительной. Это обстоятельство объяснено авторами большей устойчивостью благоприятных остаточных напряжений в условиях низких температур, когда сопротивление металла пластическому деформированию повышено.  [c.218]



Смотреть страницы где упоминается термин Устойчивость пластического деформирования : [c.89]    [c.90]    [c.50]    [c.136]    [c.4]    [c.6]    [c.105]    [c.66]    [c.160]    [c.135]    [c.200]    [c.237]    [c.57]    [c.73]    [c.170]    [c.265]   
Смотреть главы в:

Технологическая механика (БР)  -> Устойчивость пластического деформирования



ПОИСК



Деформирование пластическое

УСТОЙЧИВОСТЬ УПРУГО-ПЛАСТИЧЕСКИХ КОНСТРУКЦИИ Бифуркация и устойчивость процесса деформирования



© 2025 Mash-xxl.info Реклама на сайте