Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Шейка разрушения

Во-вторых, при испытании многих материалов на растяжение разрушению предшествует потеря устойчивости пластического деформирования, выражающаяся в образовании шейки и сопровождающаяся аномальным возрастанием пластичности. При общей тенденции уменьшения пластичности с возрастанием т] очень часто оказывается, что пластичность, определяемая как деформация в шейке разрушенного образца, выше пластичности при кручении. Поэтому нецелесообразно использовать пластичность при осевом растяжении в качестве параметра уравнения, аппроксимирующего диаграмму пластичности.  [c.141]


Щ коррозию при трении (коррозионная эрозия) — разрушение металла, вызываемое одновременным воздействием коррозионной среды и трения (например, разрушение шейки вала при трении о подшипник омываемый морской водой)  [c.14]

В первой серии опытов были получены исходные зависимости 5с от пластической деформации е/. Для этого были испытаны цилиндрические образцы (диаметр рабочей части 5 мм, длина рабочей части 25 мм) на разрыв при разных температурах (в области хрупкого разрушения). Определяли среднее разрушающее напряжение 5к = Рк/ла где Рк — нагрузка в момент разрыва образца а —радиус минимального сечения образца. Максимальное значение разрушающего напряжения, достигаемое в центре образца, т. е. величину 5с, рассчитывали с учетом жесткости напряженного состояния в шейке по зависимостям, предложенным П. Бриджменом [15]  [c.73]

В случае хрупкого разрушения (Т л п определяет действительное сопротивление отрыву или хрупкую прочность материала (рис. 40, б). При вязком разрушении (когда образуется шейка) а и S характеризуют сопротивление значительной пластической деформации, а не разрушению. В конструкторских расчетах (т и 5,, практически не используются, так как трудно представить конструкцию, работоспособность которой не нарушится ири пластической деформации отдельных деталей или узлов.  [c.64]

Участок IV начинается в точке К и заканчивается разрушением образца в точке Р. Этот участок носит название зоны разрушения образца. Деформация образца на этом участке характерна образованием шейки и удлинением образца за счет ее утонения (рис. 92, б).  [c.133]

Диаграмма растяжения хрупкого материала (рис. 224) значительно отличается от диаграммы для пластичного материала. Площадка текучести отсутствует разрушение образца происходит при весьма малых остаточных деформациях, без образования шейки. Основной механической характеристикой является предел прочности.  [c.220]

Для пластичных материалов, при разрушении которых на образце появляется шейка, взамен термина предел прочности часто пользуются термином временное сопротивле-н и е .  [c.199]

До сих пор мы говорили о вязком разрушении твердых тел, которому предшествует значительная пластическая деформация, при этом разрушение происходит в том месте образца, где образуется шейка весьма малого сечения (см, рис. 4.2). Кроме вязкого разрушения твердые тела могут испытывать хрупкое разрушение, наступающее после малой предварительной пластической деформации или вообще без нее. Хрупкое разрушение наблюдается часто у неметаллов и у многих металлов при очень низких температурах (исключение составляют металлы с ГЦК-решеткой).  [c.137]


После достижения предела прочности в одном месте образца появляется еле заметное на глаз сужение (шейка), которое становится все более и более заметным. Площадь сечения шейки быстро уменьшается и вскоре на этом месте происходит разрушение (рис. 2.92). С появлением шейки нагрузка начинает падать, поэтому и условные напряжения на участке ВЕ падают, так как диаграмму строят без учета изменения площади сечения образца. Напряжение в точке Е диаграммы называют напряжением разрушения материала. Но это напряжение чисто условное. Истинное напряжение в момент разрушения значительно превосходит не только условное напряжение, но и предел прочности и равно отношению разрушающей нагрузки к площади сечения шейки.  [c.276]

При достижении временного сопротивления на растягиваемом образце образуется местное сужение — шейка, т. е. начинается разрушение образца.  [c.194]

Чем больше 5 и Ч, тем пластичнее материал. Материалы, обладающие очень малой пластичностью, называют хрупкими. Диаграмма растяжения хрупких материалов не имеет площадки текучести, у них при разрушении не образуется шейка.  [c.195]

При разрыве образцов из пластичного материала на образце образуется шейка и поверхность разрушения как бы разделяется на две зоны центральную, в которой поверхность перпендикулярна направлению растягиваюш его напряжения, и коническую поверхность, наклоненную к оси образца под углом примерно 45°. Этот тип разрушения называется разрушением путем сдвига или разрушением срезом.  [c.64]

При растяжении пластичного материала за опасное состояние могут быть приняты начало текучести, начало образования шейки и разрушение материала. Опасными напряжениями соответственно могут быть предел текучести, предел прочности и истинное напряжение в момент разрушения (см. 6.2). Появление линий сдвигов при возникновении остаточных деформаций и разрушение образцов по поверхностям, наклоненным к направлению растягивающей силы под углом 45° ( 6.2), дают основание считать, что как образование и развитие пластических деформаций, так и разрушение происходит за счет скольжения и сдвигов под действием наибольших касательных напряжений. Такой вид разрушения называется разрушением путем среза.  [c.94]

Точка Е на диаграмме соответствует окончательному разрушению образца. Отношение разрушающей нагрузки к наименьшей площади поперечного сечения образца в области шейки назовем напряжение разрушения с обозначением через Oj.  [c.50]

Процесс разрушения начинается в малой области, расположенной на оси образца в плоскости с наименьшей площадью поперечного сечения шейки, см. точку А на рис. 2.4. Отсюда во все стороны распространяется круговой фронт трещины. Сформировавшаяся трещина представляет собой дискообразную полость, отмеченную цифрой 1 на рис. 2.4. Процесс разрушения заканчивается характерным срезом по конической поверхности, помеченной цифрой 2 на рис, 2.4, Образующая конуса наклонена к продольной оси под углом, близким к л/4.  [c.53]

Обращаем внимание на тот факт, что согласно истинной диаграмме растяжения о- материал образца в области шейки продолжает упрочняться вплоть до разрушения.  [c.61]

Растяжение образца термопластичного полимера сопровождается образованием шейки. Однако в этом случае (в отличие от металлов) шейка постепенно распространяется на всю рабочую часть образца. Происходит это либо при постоянной, либо при слабо возрастающей нагрузке, см. участок СП на диаграмме, рис. 2.12. Далее сопротивление образца вновь начинает увеличиваться. Полная деформация к моменту разрушения нередко достигает сотен процентов. Характеристики прочности и пластичности полимеров в большей степени зависят от скорости деформирования, чем аналогичные  [c.65]

По мере растяжения образца утонение шейки прогрессирует. Когда относительное уменьшение площади сечения сравняется с относительным возрастанием напряжения, сила Р достигнет максимума (точка С). В дальнейшем удлинение образца происходит с уменьшением силы, хотя среднее напряжение в поперечном сечении шейки и возрастает. Удлинение образца носит в этом случае местный характер, и поэтому участок кривой D называется зоной местной текучести. Точка D соответствует разрушению образца.  [c.70]


Разрушение и образование шейки разрушения — наименее изученные явления при деформации монокристаллов. Однако прямая зависимости gxp от Ig Г/Гпл (см. рис. 118,6) для меди, золота, свинца и других г. ц. к. кристаллов имеет тангенс угла наклона, пропорциональный величине AI(Gb ), где /l= onst=2,7- 2,8. Связь Тр с Л приводит к мысли, что при образовании шейки разрушения и при поперечном скольжении на стадии III протекают схожие процессы, т. е. напряжение разрушения Тр, которое хорошо воспроизводится от эксперимента к эксперименту, характеризует состояние всего кристалла, а не развитие шейки разрушения, происходящее более или менее случайно. Эту мысль подтверждает тот факт, что если оставшийся кусок разрушенного кристалла заново деформировать, то шейка разрушения в ка-ком-то произвольном месте возникает вновь при этом же (т. е. первоначальном) напряжении.  [c.197]

Характер разрушения материала при ползучести в основном зависит от свойств материала при данной температуре. Углеродистая сталь при телшерату-рах не выше 550°, медь, свинец и некоторые легкие сплавы обычно разрушаются вязко, с образованием больших пластических деформаций и шейки. Разрушение специальных жаропрочных сталей, хорошо сопротивляющихся ползучести, сопровождается сравнительно небольшими деформациями и носит хрупкий характер,  [c.576]

При напряжении пластическая деформация становится неустой-[вой - она локализуется, появляется шейка разрушение же наступает )зднее, после значительного местного сужения в шейке /.  [c.331]

Это свойство особенно резко выражено у пластичных металлов. На рис. 55 приведена диаграмма нагружения па растяжение и сжатие образцов из нпзкоуглеродистой стали. В случае растяжения материал проходит через хорошо известные стадии после упругой деформации металл начинает течь (участок т) и в результате объемного наклепа упрочняется (участок п). По достижении предела прочности начинается образование шейки, заканчивающееся разрушением образца.  [c.126]

После достижения усилия Риача при даль-нейшем растяжении образца деформация про-исходит, главным образом, на небольилой длине образца. Это ведет к образованию местного сужения в виде шейки (рис. 102) и к падению силы Р, несмотря на то что напряжение в сечении шейки непрерывно растет. Падение растягивающей силы Р наблюдается лишь при испытании образца в машине, ограничивающей скорость нарастания деформации. При нагружении путем подвешивания грузов разрушение произойдет при постоянной нагрузке, но со все возрастающей скоростью деформации.  [c.94]

Разрушение при действии переменных напряжений ст на участке АВ имеет статический характер, т.е. такой же, как и при однократном разрушении с образованием шейки и исчерпанием всей пластичности материала (для г ладких образцов участок АВ простирается до 10 - Ю циклов, а остро надрезанных - до 10 - Ю циклов). На участке ВС характер разрушения меняется с увеличением числа цр клов и понижением амплитудного напряжения Аа, макропластиче-ская деформация постепенно уменьшается и исчезает, а разрушение становится типично усталостным, т.е. происходящим в результате образования и распространения усталостной трещины. От приложения переменных напряжений в металле постепенно накапливаются повреждения, перехо-  [c.386]

При традиционном описании процесса пластической деформации исходят из того, что существующие в кристаллах системы скольжения позволяют обеспечить его формирование без разрушения сплошности. В.Е. Паниным и др. [11] было доказано, что пластическое течение происходит одновременно на нескольких уровнях, причем трансляция на одном уровне обязательно сопровождается поворотом на более высоком уровне, и наоборот. Принципиально важным в этом подходе является то, что любое нарушение структуры кристалла при подводе к нему внешней энергии рассматривается с позиции самоорганизации локальных структур, обусловленной энтропийными эффектами. Вторичные структуры, формирующиеся в деформируемом кристалле при достижении необходимого уровня возбуждения, представляют совокупность локальных структур - от дефектов типа точечных или линейных до аморфного состояния, возникающего при высокой плотности дефектов. Таким образом, при анализе пластической деформации кристаллов необходимо учитывать кооперативное взаимодействие трансляции, ответственной за изменение формы (дисторсии), и ротации, ответственной за изменение объема (дилатации). При этом важную роль в распространении скольжения играют границы зерен. Эволюция скольжения включает образование полос скольжения на начальных этапах пластической деформации, которые потом трансформируются в полосы микроскопического сдвига, что приводит к возникновению зоны локализованной макропластической деформации, проходящей через весь объем. Переход от одного масштабного уровня (микрополосы) к другому (макротюлосы) являет собой неустойчивость пластической деформации, предопределяющую шейко-образование. Он характеризуется тем, что шменяются элементарные носители деформации - дислокации сменяются дисклинациями. Дисклинации являются более энергоемкими дефектами, чем дислокации, что позволяет системе про-  [c.241]

Пластическое разруше-н и с. Происходит I riit существенной пластической дефо /лции, протекающей но всему (или почти по всему) объему тела. Разновидность пластического разрушения — разрыв после 100%-го сужения шейки при растяжении, происходящий в регзультате исчерпания способности материала сопротивляться пластической деформации.  [c.11]

При 17 = 0,5 возможна реализация как первого, так и второго механизма нестабильного развития пластического деформирования и разрушения рассматриваемых конструкций. Следу ет также отметить, что процесс потери пластичесжой устойчивости оболочки в виде выпучины вдоль ее образу ющей происходит при более низких значениях предельных равномерных деформаций Б,, р и критических напряжений а р, чем анаюгичный процесс. об> словленный развитием шейки в кольцевом ссчении  [c.93]


Примером пластического разрушения может служить разрыв образца из отожженной меди после 100%-ного сужения шейки при растяжении, происходящий в результате утраты способности материала сопротивляться пластической деформации.  [c.319]

В малоцикловой зоне (участок кривой AB D) при нагружении образца растяжением — сжатием можно выделить три характерные участка. На участках I и II разрушение носит квазистатический характер с образованием шейки в месте излома. На участке III на поверхности разрушения уже отчетливо можно выделить зону усталостного излома. Зона IV, соответствующая динамическому пределу текучести, является как бы границей между малоцикловой и многоцикловой (зона V) областями. Участок VI полной кривой усталости соответствует пределу выносливости.  [c.361]

Между материалами хрупкими, с одной стороны, и материалами пластичными, с другой, можно вставить промежуточную группу — материалы ограниченной пластичности. Типичным примером таких материалов служат низколегированные, термически обработанные стали с высоким пределом текучести порядка 1500 МПа и выше. При растяжении стержневых образцов в этом случае наблюдается шейка, однако в зоне собственно разрушения нет поверхностей среза, характерных для пластичных материбшов, см. текст к рис. 2.4. Возникают лишь поперечные и продольные трещины.  [c.57]

Эксперименты по растяжению (или сжатию) стандартных образцов материалов являются испытаниями на прочность. Результаты этих испытаний позволяют ранжировать материалы по прочности. Это с одной стороны. С другой стороны, такие образцы можно рассматривать в качестве моделей реальных стержневых элементов машин и сооружений. В этом случае результаты упомянутых экспериментов позволяют сформулировать два фундаментальных закона. Согласно первому стержневой элемент по мере роста нагрузки всегда обнаруживает стадию упругого деформирования (с одновременным выполнением закона Гука), стадию упругопластического деформирования и стадию разрушения. Последняя может включать, а может и не включать подстадию образования шейки.  [c.67]

Согласно модели среза разрушение происходит по плоскости действия максимальных касательных напряжений (рис. 6.3). На это, в частности, указывает срез по конической поверх ности в области шейки при растяжении стержневого образца (см. линии АВ и А1В1 на рис. 6.4). Именно здесь эта коническая поверхность соприкасается с плоскостями действия максимальных касате.тьных напряжений. При этом к моменту возникновения предельного состояния разрушения эти касательные напряжения достигают своего наибольшего значения, определяемого сопротивлением срезу т ре,,. Критерий разрушения аналогичен по форме критерию пластичности (6.8), но включает другую постоянную материала  [c.141]

Опыт инженерного использования критериев (6.22) и (6.26) указывает, что в материале принципиально заложена возможность разрушения как отрывом, так и срезом. Все зависит от вида напряженного состояния и от соотношения между константами Ст( .р и 2Тррез. Например, стержневой образец из мрамора разрушается при растяжении без остаточных деформаций, поверхность излома ориентировагса перпендикулярно оси образца, что характерно для разрушения отрывом. Однако такой же образец при растяжении в условиях значительного бокового давления об наруживает существенную остаточную деформацию (до 20%) и разрушается срезом. Стержневые образцы из пластичного материала с относительно глубокой кольцевой выточкой разрушаются без существенных остаточных деформаций, хотя при отсутствии указанного надреза разрушению предшествуют большие остаточные деформации с образованием шейки. Причина охрупчивания образца состоит в том, что у дна выточки имеет место трехосное растяжение, при котором материал предрасположен к разрушению отрывом. Подобный эффект вызывает даже шейка, сформировавшаяся при растяжении стержневого образца. При этом первоначальная трещина возникает в окрестности точки, лежащей на продольной оси образца в плоскости поперечного сечения наименьшей площади (см. точку О на рис. 6.4). Трещина имеет дискообразную форму, а с ростом нагрузки ее фронт распространяется в радиальном направ-  [c.142]

При высоком для данной температуры уровне нагружения процесс разрушения сопровождается пластическим деформированием, а на образцах, подвергнутых испытанию, образуется шейка. При низких для данных температур уровнях нагрузки процесс разрушения идет путем накопления микротрещин и охрупчивания материала. Поэтому процесс разрушения во времени нужно рассматривать с учетом характера разрушения и использовать соответствующ,ие этому случаю соотношения. Кривая длительной прочности может быть построена по результатам экспериментов на цилиндрических образцах, гсоторые выдерживают под постоянной растягивающей нагрузкой до наступления разрушения. Отложив по оси ординат напряжение, а по оси абсцисс — время до разрушения для данного напряжения, получим кривую длительной прочности (рис. 8.28).  [c.177]


Смотреть страницы где упоминается термин Шейка разрушения : [c.580]    [c.141]    [c.737]    [c.220]    [c.85]    [c.142]    [c.54]    [c.54]    [c.168]    [c.315]    [c.207]    [c.11]    [c.15]    [c.134]    [c.139]    [c.177]   
Физические основы пластической деформации (1982) -- [ c.197 ]



ПОИСК



Шейка



© 2025 Mash-xxl.info Реклама на сайте