Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефекты структуры и диффузия

Законы диффузии Методы измерения коэффициента диффузии Механизмы процесса диффузии Термодинамика и диффузия Расчет коэффициента диффузии Диффузия в разбавленных твердых растворах Гетеродиффузия Дефекты структуры и диффузия Исследование топографии диффузионных потоков в металлах методом электронномикроскопической авторадиографии  [c.86]

Дефекты структуры и диффузия  [c.118]


На диффузию оказывают влияние не только группировки дислокаций, как это имеет место па границах зерен, но и отдельные дислокации. Можно ожидать взаимодействий между определенными дефектами структуры и диффундирующими атомами примеси. В зоне вдвинутой плоскости кристаллической решетки (случай краевой дислокации) решетка находится в состоянии избыточного гидростатического давления, тогда как с противоположной стороны плоскости скольжения имеется гидростатическое разрежение. Если кристалл находится при достаточно высоких температурах, когда подвижность элементов решетки довольно велика, атомы примеси с большим атомным радиусом, чем у атомов основного кристалла, перемещаются в область гидростатического разрежения, потому что благодаря этому достигается самое благоприятное распределение напряжений (рис. 11.6).  [c.246]

Коэффициент упаковки в структуре типа алмаза (плотность упаковки) мал — 0.34. Такая неплотная упаковка решетки, обусловленная направленностью связей, существенно сказывается на особенностях образования точечных дефектов, растворимости и диффузии примесей в алмазоподобных полупроводниках.  [c.43]

МОЖНО И В твердых кристаллах, где оно связано с диффузией дефектов (см. примечание на с. 124). Но в смектиках оно в принципе неустранимо ввиду большей размытости периодической структуры (как бы содержащей значительное число дефектов — вакансий) и большей подвижности молекул.  [c.238]

Реальные кристаллы отличаются от идеализированной модели наличием достаточно многочисленных нарушений регулярного расположения атомов. Любое отклонение от периодической структуры кристалла называют дефектом. Дефекты структуры оказывают существенное, порой определяющее, влияние на свойства твердых тел. Такими структурно-чувствительными, т. е. зависящими от дефектов структуры, свойствами являются электропроводность, фотопроводимость, люминесценция, прочность и пластичность, окраска кристаллов и т. д. Процессы диффузии, роста кристаллов, рекристаллизации и ряд других можно удовлетворительно объяснить исходя из предположения об их зависимости от дефектов. В  [c.84]

Тепловой эффект может вызвать процесс диффузии вакансий и внедренных атомов, изменяющий тонкую структуру и свойства металлов. Б металле появляются поры, которые являются зародышами будущих микротрещин. Тепловой эффект может привести также к рекомбинации пар Френкеля с частичным исчезновением этого дефекта.  [c.40]


Преимущественная диффузия по поверхности ил-и границам зерен и блоков мозаики объясняется тем, что там степень нарушения кристаллического строения и дефекты структуры (наличие искажений, вакансий, дислокаций, напряжений, трещин) выражены особенно сильно.  [c.56]

С изменением парциального давления кислорода может меняться тип проводимости. Так, при высоких давлениях кислорода оксид может иметь р-проводимость, а при низких давлениях этот же оксид принимает свойства п-проводимости. В таком случае дефекты структуры окалины представляют собой соответственно внедренные атомы кислорода (р-проводимость) и кислородные вакансии (и-проводимость), диффузия во внешнем слое окалины происходит преимущественно путем переноса внедренных ионов, а во внутреннем слое (около металла) путем диффузии вакансии. Это ведет к тому, что внутри окалины существуют р—п-переходы, которые и должны воздействовать на процессы переноса.  [c.57]

Влияние температуры облучения на предел текучести. В процессах закрепления дислокаций, образования вторичных дефектов и частиц выделений определяющую роль играет термическая диффузия. Поэтому структура и свойства кристаллических тел должны зависеть от температуры облучения. Однако на число и вид первичных дефектов, образующихся при бомбардировке, она не влияет. В значительной степени от температуры облучения зависит степень сохранности первичных дефектов в решетке.  [c.77]

II этап. Активация диффузии определяется мгновенным значением неравновесной концентрации вакансий, количеством и скоростью выхода на поверхность элементов скольжения и увеличением подвижности атомов и дефектов структуры.  [c.37]

Волокна бора характеризуются низкой плотностью (2400. .. 3000 кг/см ) прочностью при растяжении (до 3800 МПа) и модулем упругости (до 400 ООО МПа). Их получают осаждением бора из газовой смеси водорода и треххлористого бора на нагреваемую вольфрамовую проволоку (диаметром 10. .. 12 мкм). В результате осаждения образуется сердечник из бори-дов вольфрама (диаметром 15. .. 17 мкм), вокруг которого располагается слой поли-кристаллического бора. Сердечник образуется вследствие диффузии и взаимодействия бора с вольфрамовой проволокой. Поэтому в волокнах бора существует явно выраженная поверхность раздела между оболочкой и сердцевиной. Прочность волокон во многом зависит от появляющихся дефектов в процессе их получения. Снижение прочности в основном связано с появлением локальных дефектов структуры борного слоя в виде крупных кристаллов, инородных включений, трещин, пустот и др. Эти дефекты, имеющие технологическое происхождение, могут располагаться на поверхности волокон, в борном слое, в сердцевине и на границе раздела между ними.  [c.462]

При высоких температурах ускоряются диффузионные процессы, изменяются исходная микроструктура и механические свойства материалов. С повышением температуры значительно возрастает число вакансий, увеличивается подвижность точечных дефектов. Кроме того, диффузия способствует перемещению дислокаций (линейный дефект) путем переползания, что дает им большую степень свободы , но также наблюдаются частичная аннигиляция дислокаций (дислокации разного знака взаимно уничтожаются), перераспределение их, что коренным образом меняет первоначальную дислокационную структуру металла.  [c.136]

Автор вместе с группой товарищей в течение ряда лет занимается исследованием вопросов, имеющих отношение к проблеме связи структуры и свойств материалов. Вместе с этим он читает аспирантам курс физического металловедения. Изложение вопросов, так или иначе затрагивающих вышеуказанную проблему, и составляет основу книги. Последовательно рассмотрены металлическая связь и ее влияние на свойства металлов, строение атомов и межатомное взаимодействие, дефекты структуры, диффузия и теория фазовых превращений, некоторые конкретные процессы, формирующие конечные свойства металла полигонизация, старение, мартенситное превращение, возможности достижения высокой прочности, включая композиционные материалы, жаропрочность, поведение металлов в глубоком вакууме и, наконец, некоторые возможности использования ядерных процессов для исследования металлов. Где это возможно, делается акцент на вопросах связи строения и свойств.  [c.8]


Поверхности раздела в кристаллах — границы зерен и субграницы, границы фаз, внешняя поверхность — какова бы ни была их физическая модель являются средоточием структурных дефектов (дислокаций, избыточных вакансий) и, следовательно, создают пути облегченной диффузии. Аналогичное влияние должны оказывать нарушения, возникающие в результате пластической деформации, облучения частицами высоких энергий, фазовых превращений и растворения чужеродных атомов. Диффузия в связи с особенностями тонкой структуры металла определяет во многих случаях кинетику сложных процессов, изменение структуры и в конечном счете изменение свойств металлического сплава.  [c.118]

Данные различных исследований показывают, что дефекты структуры, возникающие при механической обработке поверхности, оказываются весьма устойчивыми и влияют на скорость диффузии даже при температурах, лежащих выше температуры рекристаллизации. Существенное значение имеет устойчивость этих нарушений, поскольку с повышением температуры степень дефектности может меняться. Здесь, по-видимому, играют роль факторы, зависящие от природы металла (решетки, электронной структуры) и его состояния, а также факторы, зависящие от условий получения металла (структуры, степени чистоты и т. д.).  [c.132]

Полное описание диффузии в реальном металле должно предусматривать вычисление из суммарного коэффициента диффузии парциальных коэффициентов диффузии по определенным дефектам структуры с учетом плотности и топографии дефектов.  [c.136]

Зависимость эффекта наследственности от состава и структуры металла сложная. Дефекты структуры, возникающие после механической обработки поверхностных слоев, весьма устойчивы и в некоторых случаях влияют на коэффициент диффузии D при температурах, значительно превосходящих температуры рекристаллизации [59]. Как было отмечено ранее при изложении ре-  [c.212]

В настоящее время ведутся интенсивные работы с целью использования высокой прочности нитевидных кристаллов и создании новых конструкционных материалов. Изучение поведения нитевидных кристаллов различных материалов имеет большое теоретическое значение для выяснения многих вопросов физики твердого тела — теории прочности и пластичности, изучения магнитных явлений и т. д. Диффузия, фазовые превращения,, старение в усах должны протекать иначе, чем в обычных металлах. Поскольку прочность и кинетика многих процессов сильно-зависят от дефектов структуры, бездефектный нитевидный кристалл представляет собой великолепный, хотя и трудный для исследования, объект.  [c.353]

Под синергетическим подходом главным образом подразумевается формулирование и анализ системы кинетических уравнений для выявления механизмов самоорганизации в ансамбле дислокаций с образованием структур диссипативного типа [201]. Важным аспектом развиваемых теорий является формулирование такой системы дислокационных кинетических уравнений, которая могла бы описать это явление не только с качественной, но и с количественной стороны [201]. Кинетические уравнения должны включать в себя процессы, реально идущие в кристалле, а именно генерацию, аннигиляцию и диффузию дефектов.  [c.112]

Согласно первой теории, разработанной Вагнером и Хауффе, небольшая добавка легирующего элемента окисляется и, растворяясь в оксиде основного металла, уменьшает число дефектов в кристаллической решетке основного металла. Это приводит к упорядочиванию структуры и снижает скорость диффузии ионов в защитной пленке.  [c.59]

Роль поверхностной энергии в образовании зеркальной зоны излома заключается, вероятно, в следующем. Компоненты окружающей среды, адсорбируясь на дефекте поверхности, снижают поверхностную энергию у стекол разных марок по-разно-му. Местом избирательной адсорбции атомов и молекул активной среды служат дефекты структуры стекла, к которым они проникают путем диффузии. Так как процесс разрушения сопровождается образованием новых поверхностей и облегчается сопутствующим понижением поверхностной энергии материала, то образование трещин тем легче, чем меньше поверхностная энергия стекла, чем больше активность окружающей среды и адсорбционная активность компонентов стекла и чем больше дефектность структуры стекла.  [c.104]

Растворно-диффузионный спай, когда основной металл и припой образуют между собой твердые растворы, если не учитывать диффузию в твердой фазе при нагреве под пайку, начинает формироваться с момента смачивания основного металла расплавом припоя. В результате протекающего при этом растворения твердого металла в жидком припое состав зоны сплавления изменяется, достигая равновесного при данной температуре, соответствующего пересечению изотермы с линией ликвидуса. В процессе растворения одновременно идет диффузия из жидкости в твердую фазу, но поскольку скорость растворения твердого металла в жидком значительно выше, чем диффузия в твердой фазе, то диффузионная зона на поверхности основного металла не образуется. С приближением состава зоны сплавления к равновесному скорость растворения основного металла замедляется, и в основном металле начинает образовываться диффузионная зона. Наиболее активная диффузия при этом протекает по границам зерен и дефектам структуры основного металла.  [c.118]


На контактное плавление значительное влияние оказывает дефектность структуры металлов. Так, при плавлении предварительно облученных металлов обнаружено проникновение одного компонента в другой не только в поверхностном слое, по границам зерен и блоков, но и по дефектам структуры кристаллов и дислокациям, прилегающим к этим границам. После возникновения жидкой фазы дальнейшее взаимодействие металлов происходит через слой расплава. Образование твердого раствора в поверхностном слое взаимодействующих металлов, находящихся в контакте с жидкой фазой, является процессом, непосредственно подготавливающим плавление этого слоя. Поэтому и после возникновения жидкой фазы контактное плавление рассматривается как процесс плавления пересыщенных твердых растворов, образовавшихся вследствие диффузии атомов второго компонента из жидкости и ухода атомов первого компонента в жидкую фазу [4]. Разница лишь в том, что этот процесс протекает в более узком слое и ему сопутствует растворение твердых растворов.  [c.141]

Одним из наиболее универсальных физических явлений, играющих заметную роль в самоорганизации структуры при трении, является диффузия. Следующие факторы усиливают значения диффузионных процессов при трении 1) поверхностная диффузия характеризуется значительно меньшей энергией активации, чем объемная 2) высокие температуры вспышек на пятнах фактического контакта обеспечивают большие скорости диффузионных процессов 3) в современной триботехнике широко применяются метастабильные структуры, реализуемые, например, при обработке поверхности пучками высокоэнергетических ионов и имеющие высокую концентрацию дефектов строения и диффузионную подвижность атомов и вакансий. Важным результатом диффузии в приповерхностных слоях является поверхностная сегрегация. Разница концентраций может достигать нескольких порядков величины [12]. Очевидна возможность радикального изменения адгезионных и деформационных характеристик контактирующих поверхностей вследствие сегрегации.  [c.11]

За редкими исключениями, кристаллы и кристаллиты, образующие поликристаллы, обладают различными типами структурных дефектов. Знание типов, способов образования, а также влияния структурных дефектов на различные процессы и свойства твердых тел совершенно необходимо для современных специалистов по физике твердого тела. Понятие реальный кристалл чрезвычайно широко. При малой концентрации структурных несовершенств реальный кристалл в пределе переходит в идеальный, приобретая качественно новые свойства. При большом содержании дефектов реальный кристалл в пределе приобретает аморфную структуру и свойства, характерные для аморфного состояния. Воздействие на реальную структуру твердых тел является одним из способов управления их свойствами. Например, в зависимости от концентрации точечных дефектов коэффициент диффузии в металлах может меняться на семь порядков, в таком же диапазоне меняется электропроводность полупроводника. Техническая прочность твердых тел отличается от теоретической (предельной) на три-четыре порядка. Исключив возможность влияния несовершенств, можно реализовать теоретическую прочность. Каждому понятно, насколько это важно для практических целей.  [c.6]

Подробно изложены современные представления о структуре границ зерен в поликристаллах — геометрическая теория, структурные дефекты, атомная теория с учетом энергетических параметров, взаимодействие границ с примесными атомами и т. д. Рассмотрены механизмы, определяющие прочностные и другие физические свойства поликристаллов, а также механизмы миграции и перестройки границ, зернограничного проскальзывания и охрупчивания (тре-щинообразования), сегрегации и диффузии примесей, представляющие значительный научный и практический интерес. Книга содержит результаты оригинальных исследований авторов, а также новые данные советских и зарубежных исследований.  [c.319]

В карамических материалах в результате нарушений структуры происходят различные изменения свойств. Внедрение атомов в междоузлия решетки приводит к распуханию, которое может развиваться и вызывать разрушение материала. Дефекты структуры понижают теплопроводность керамики. Термические пики, особенно образующиеся в конце пути пробега частицы, представляют собой локализованные области высоких температур. Быстрый нагрев и охлаждение в этих областях могут усилить диффузию и привести к образованию метастабильных фаз.  [c.142]

Физические свойства К. Все свойства К.— механические, электрические, магнитные, оптические, электро- II магнитооптические, транспортные (напр., диффузия, тепло- и электропроводность) и др.— обусловлены атомно-кристаллич, структурой, её симметрией, силами связи между атомами и энергетич. спектром электронов решётки, а нек-рые из свойств — дефектами структуры. Поляризуемость К., оп-тич. преломление и поглощепио, электро- и магиптострикция, вращение плоскости поляризации (ги-рация), пьезоэлектричество и пьезо-магнетизм, собств. проводимость характеризуются тензорами, ранг к-рых зависит от типа воздействия на К. и его отклика. Напр., напряжённость электрич. поля с компо-  [c.520]

Для получения тонких легиров. слоев используется ионная имплантация, позволяющая вводить практически любую примесь и управлять её концентрацией п профилем распределепия. Однако в процессе ионного Л. п. возникают точечные дефекты структуры, области разупорядочения решётки, а при больших дозах — аморфизованные слои. Поэтому необходим последующий отжиг. Отжиг проводят при темп-рах, существенно более низких, чем при диффузии (напр., для Si<700-800 °С).  [c.580]

Диффузионное спекание. Диффузионный механизм переноса вещества наблюдается три спекании большинства кристаллических фаз в отсутствии жидкой фазы. Происходит, как принято называть, твердофазовое спекание. Диффузионный механизм спекания самым тесным образом связан со структурой и н ичием дефектов в кристаллической решетке спекаемого материала. Чем больше дефектов имеют кристаллическая решетка и поверхность спекаемого кристалла, тем больше его поверхностная энергия. Реальные тонкоизмельченные кристаллические тела всегда различаются между собой величиной свободной энергии. При соприкосновении мельчайших кристаллических частиц в процессе нагревания происходит перенос вещества с большей свободной энергией в местах. контакта в направлении частицы с меньшей свободной энергией, так как по законам термодинамики всякая система стремится к выравниванию уровней энергии. Таким образом, движущей силой и энергетическим источником переноса вещества диффузией является разность значений свободной энергии в месте контакта вещества.  [c.70]

С помощью ЭВМ можно моделировать не только структуру, но и исследовать физические свойства созданных моделей. Весьма плодотворным, в частности, оказался анализ распределения локальных внутренних напряжений (Эгами, Сро-ловиц, Маеда), позволивший создать модель дефектов п- и р-типа (области разряжения и сжатия), а также т-типа (области сдвиговых напряжений). Моделировали процессы пластической деформации и радиационного- повреждения (Ямамото), свойства вакансий [36], активационные механизмы диффузии [37].  [c.15]

В работе [23] была рассмотрена модель приповерхностной сегрегации примесей (обогащение или обеднение), учитывающая взаимодействие атомов примеси с потоком вакансий, для которых свободная поверхность служит стоком или источником. Модель пригодна также для описания внутренней сегрегации вокруг дефектов структуры, которые могут служить местом стока или зарождения вакансий (границы зерен, субзерен, дислокации и т. п.— см. ниже). Такая сегрегация является неравновесной и количественно зависит от энергии взаимодействия вакансий с примесными атомами В и отношения коэффициентов диффузии примесных и матричных атомов DbIDa- При значительной энергии  [c.51]


Диффузионное перемещение атомов, по крайней мере, в случае вакаисионного механизма может быть реализовано, если в структуре металла имеются дефекты. Поэтому в общем случае естественно ожидать ускорения диффузии по мере уменьшения совершенства кристалла. Влияние дефектов структуры оказывается особенно значительным при пониженных температурах, когда энергия тепловых колебаний и флуктуация их недостаточны для активации диффузионного потока в совершенном кристалле. В этом случае начинают работать участки с дефектной структурой, в которых энергия активации процесса значительно меньше. И хотя количество таких участков может быть невелико, именно они определяют диффузионный поток при низких температурах. В этих условиях обычно наблюдаются малые значения величин Do и Q. Малая величина множителя >о объясняется относительно малым числом участков облегченной диффузии.  [c.118]

Для анализа результатов была использована модель Калиша, согласно которой дислокации, возникающие в результате деформации, группируют атомы углерода вдоль своих линий, заблокированные атомы диффундируют вдоль линий дислокаций под действием поля упругих напряжений. Возникает градиент концентрации углерода между обедненной зоной вокруг области взаимодействия и окружающей областью, который приводит к диффузии атомов углерода к дислокациям. При этом возможно обратное растворение е-карбида, поскольку, как показывает расчет, число атомов, попадающих в сферу взаимодействия, достаточно велико. С повышением температуры старения до 400° С размер обл астей взаимодействия дефектов структуры с атомами углерода быстро уменьшается и сила притяжения со стороны дислокаций ослабевает.  [c.277]

Нестабильный характер протекания пластической деформации (в общем случае возникновение скачков нагрузки на кривых деформационного упрочнения) обусловливается взаимодействием исходной дефектной структуры кристаллов и субструктуры, образующейся в процессе деформации. В частности, как отмечается в [229], при пластической деформации предварительно облученных монокристаллов меди и закаленных с предпла-вильных температур образцов из алюминия в исходной дефектной структуре указанных материалов, содержащей больщое количество вакансион-ных и межузельных призматических петель и тетраэдров дефектов упаковки, образуются бездефектные каналы шириной 0,1—0,5 мкм (рис. 85,6). Это обусловливает развитие неоднородности пластической деформации на ее начальной стадии, что отражается на кривых деформационного упрочнения в виде характерных скачков нагрузки (рис. 85, а). В работе [229] механизм образования бездефектных каналов в облученных или закаленных кристаллах рассматривается с кинетических позиций как "закономерная эволюция дислокационного ансамбля в кристалле при заданных условиях его деформирования". При этом, помимо процессов размножения, аннигиляции и диффузии дислокаций, учитывается также механизм взаимодействия скользящих дислокаций с призматическими петлями дефектов упаковки. В результате указанного взаимодействия дефекты заменяются дислокациями, образуя на них пороги и перегибы.  [c.128]

В области температур, отвечающих сверхнластичности, т. е. вблизи 720 К, преобладающим фактором разупрочнения становитсн динамический возврат (динамическая рекристаллизация на месте ), а такн е динамическая рекристаллизация, обусловленная значительной подвижностью границ зерен. Перечисленные обстоятельства мешают накоплению дефектов, ответственных за упрочнение, не обеспечивают кинетических условий для возникновения неренапряже- ний и зарождения очагов разрушения. Кроме того, диффузионный массоперенос, необходимый для возникновения пор, еще недостаточно выражен, поэтому диффузия не может повреждать металл с необходимой скоростью. Образование и развитие нор на дефектах структуры в данной области температур чрезвычайно затруднены из-за достаточно большой скорости перемещения границ. Таким образом, наблюдающаяся при 720 К очень высокая пластичность — результат подавления процессов разрушения за счет интенсификации аккомодационных каналов различной природы и преобладания динамической активности структурных элементов (границ зерен и субзерен особенно) над конкурирующими процессами диффузионного порообразования. Согласно данной точке зрения, увеличение скорости перемещения элементов структуры (при сохранении диффузии на прежнем уровне) должно тормозить разрушение, а ослабление — способствовать ему за счет облегчения диффузионного порообразования, роста и слияния пор на элементах дефектной структуры.  [c.73]

Продукты коррозии железа, образующиеся в сероводородсодержащих средах, имеют общую формулу Fe Sy и оказывают существенное влияние на кинетику коррозионного процесса. Структура и защитные свойства сульфидов железа зависят от условий образования, главным образом от парциального содержания сероводорода в среде. В литературе имеются сведения о рентгеноструктурных и электронно-графических исследованиях [48], в результате которых установлено, что при низкой концентрации сероводорода (до 2,0 мг/л) сульфидная пленка состоит главным образом из троилита FeS и пирита FeS2 с размерами кристаллов до 20 нм. При концентрации сероводорода от 2,0 до 20 мг/л дополнительно появляется небольшое количество кан-сита FegSg. При концентрации сероводорода выше 20 мг/л в продуктах коррозии преобладает кансит и размеры кристаллов увеличиваются до 75 нм. Кансит имеет несовершенную кристаллическую решетку, поэтому он не препятствует диффузии железа и не обладает защитными свойствами. Поэтому устанавливается постоянная и довольно высокая скорость коррозии. Кристаллические решетки пирита и троилита имеют относительно небольшое число дефектов, тормозят диффузию катионов железа и оказывают некоторое защитное действие.  [c.10]

Электропроводность. Изучение электропроводности кристаллов позволяет получить сведения о природе дефектов и их энергии активации. Электропроводность сег-нетоэлектриков характеризуется целым рядом особенностей, обусловленных наличием домен юй структуры и фазовых переходов. Для электрических измерений использовались образцы стехиомет-рического состава с х = 0,25, на торцевые поверхности которых были нанесены омические палладиевые контакты [31]. Серебряные электроды использовать не рекомендуется, так как наблюдается заметная диффузия серебра в кристалл. Измерения проводились в интервале температур 25 860 °С при скорости нагрева 150°С/час. Температура вблизи кристалла контролировалась платино-платинородиевой термопарой. Электропроводность была измерена на постоянном и переменном токе с частотой 100 Гц (рис. 4.9). В области 400 °С на кривой lga = /(l/D имеет место характерный излом, разделяющий два прямолинейных участка в области высоких температур имеет место собственная про ьодимость, при низких температурах преобладает при-  [c.115]

Изменение количества жидкой фазы в шве при образовании диспергированных спаев может быть только в результате диффузии атомов припоя по границам зерен и блоков, а также дефектам структуры. Одновремент о в результате адсорбционного понижения прочности основного металла под действием расплава припоя происходит его диспергирование. Размер дисперсных частиц определяется физико-химическими свойствами основного металла и расплава. Наиболее крупные частицы при диспергировании вольфрама наблюдаются при пайке марганцем. При пайке вольфрама серебром происходит диспергирование на частицы коллоидных размеров, которые микрорентгеноспектральным анализом не обнаруживаются. Характер разрушения поверхностного слоя  [c.166]

Температура эксплуатации и скорость нагружения существенно влияют на склонность к водородному охрупчиванию. Подвижность водорода весьма высока при комнатной температуре и возрастает в два и черыре раза при повышении температуры до 100 и 200 С соответственно. Эффект повышения температуры может проявиться двояко в возможности повышения концентрации водорода на дефектах структуры, в увеличении вероятности ухода водорода из металла. При понижении температуры скорость диффузии водорода уменьшается, и при определенных скоростях перемещения дефектов кристаллической решетки типа дислокаций водород не в состоянии перемещаться вместе с ними.  [c.139]

Роль водорода исключительно важна в сварных соединениях из-за наличия в них технологических дефектов, значительной структурно-механической неоднородности и концентраторов напряжений. Особой опасностью вследствие высокой гетерогенности структуры и химической неоднородности характеризуется зона термического влияния. Повышение содержания ферритой фазы в стали 09Г2С с ферри-то-перлитной структурой облегчает диффузию водорода, в том числе и  [c.143]


Смотреть страницы где упоминается термин Дефекты структуры и диффузия : [c.114]    [c.178]    [c.210]    [c.408]    [c.64]    [c.38]    [c.539]    [c.149]   
Смотреть главы в:

Строение и свойства металлических сплавов  -> Дефекты структуры и диффузия



ПОИСК



Дефекты и диффузия

Дефекты структуры

Диффузия



© 2025 Mash-xxl.info Реклама на сайте