Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние дефектов структуры

Спинодальный распа/з, м зародышеобразование ф Последовательность процесса старения ф Характеристика структурных состояний на разных стадиях старения Влияние дефектов структуры Ф Влияние третьего элемента Коагуляция фаз при старении Коагуляция карбидов при отпуске Старение  [c.216]

Влияние дефектов структуры  [c.230]

Особенности превращения Сущность превращения Влияние дефектов структуры Кристаллография мартенситного превращения Влияние состава и стабилизация аустенита Тонкая структура мартенсита Состояние мартенсита при низком отпуске  [c.252]


В механизме зарождения поры, кроме разрыва связей, существенную роль, по-видимому, играет коагуляция вакансий с учетом влияния дефектов структуры и приложенных напряжений.  [c.404]

Отметим также, что влияние дефектов структуры на скорость перераспределения ионов по подрешеткам наблюдали в работах, [3-5].  [c.161]

В третьем томе рассмотрено влияние дефектов структуры на механические свойства сплавов. Описаны виды точечных дефектов, условия их возникновения и аннигиляции, а также различные виды дислокаций, их зарождение, движение, взаимодействие друг с другом и точечными дефектами. Приведены способы деформации разрушения металлов и сплавов. Изложены сверхпроводящие свойства металлов и сплавов.  [c.224]

Наличие такого рода дефектов в структуре твердых тел, как известно, существенным образом сказывается на их механических свойствах. Влияние дефектов структуры, развивающихся в процессе деформации твердого тела прежде всего проявляется в резком снижении его прочности по сравнению с наибольшим теоретическим значением прочности, вычисляемым, например, из теории кристаллической решетки.  [c.6]

За последнее время уделяется большое внимание влиянию субструктуры на коррозию металлов. Дефекты структуры, выходящие на поверхность металла, обладают повышенной реакционной способностью и по ним идет в первую очередь растворение металла. В зависимости от плотности активных мест, обусловленных на различны верн х " выходом дислокаций на поверхность,  [c.327]

Известно [27, 30], что ограничение значений твердости металла сварного шва является одним из практических методов снижения склонности сварного соединения к сероводородному растрескиванию. Как следует из [11, 12, 25, 31], на образование трещин в сварном соединении оказывает влияние неоднородность структуры металла, наличие в ней зон, склонных к растрескиванию, уровни действующих и остаточных напряжений. Именно в сварных соединениях локализуется большая часть разрушений металла, связанных с сероводородным растрескиванием. Наиболее негативное влияние оказывает быстрое охлаждение шва с образованием перлитно-бейнитной смеси с мартенситом. Стойкость к сероводородному растрескиванию металла сварного шва меньше, чем основного металла не только из-за наличия остаточных напряжений, но и вследствие присутствия различных дефектов. Для сталей повышенной прочности характерно сероводородное растрескивание по сварному шву и зоне термического влияния. Для сталей обычной прочности избирательное разрушение по шву и зоне термического влияния отмечается лишь при переохлаждении.  [c.63]


Реальные кристаллы отличаются от идеализированной модели наличием достаточно многочисленных нарушений регулярного расположения атомов. Любое отклонение от периодической структуры кристалла называют дефектом. Дефекты структуры оказывают существенное, порой определяющее, влияние на свойства твердых тел. Такими структурно-чувствительными, т. е. зависящими от дефектов структуры, свойствами являются электропроводность, фотопроводимость, люминесценция, прочность и пластичность, окраска кристаллов и т. д. Процессы диффузии, роста кристаллов, рекристаллизации и ряд других можно удовлетворительно объяснить исходя из предположения об их зависимости от дефектов. В  [c.84]

Влияние на структуру проявляется через изменение энергии дефектов упаковки. Примеси, которые снижают эту энергию и тем затрудняют поперечное скольжение (динамический возврат), понижают и значение В таком же направлении влияет и понижение примесями сил межатомных связей. Повышение прочности связей повышает  [c.346]

Как видно, бесконечно узкое отверстие (г = 0) создает наибольшую концентрацию (a = 3,0). При этом неравномерность распределения напряжения с увеличением диаметра 2г уменьшается. Таким образом, увеличение напряжения вследствие влияния концентратора тем сильнее, чем он острее, т. е. решающее значение имеют не размеры, а форма концентратора. В этом смысле тонкие, волосяные трещины и отверстия не менее опасны, чем видимые крупные дефекты структуры материала.  [c.166]

Как отмечалось выше, изменение химического потенциала металла под влиянием деформации равно избыточной упругой энергии поля напряжений, обусловленного искажением решетки вокруг дефектов структуры (с точностью до энтропийного члена).  [c.58]

Сопоставление реальных скоростей растворения деформированного и недеформированного металлов указывает на активное участие в механохимическом растворении не только атомов в позиции А, но и в прилегающих областях, испытывающих влияние упругого искажения решетки вокруг дефектов структуры и обладающих повышенным химическим потенциалом.  [c.172]

Дефектами структуры следует считать такие, которые снижают физико-механические характеристики, установленные соответствующими нормативными документами (ГОСТами, ТУ, нормалями и т. д.). Доминирующее влияние на качество изделия оказывают, как правило, дефекты, связанные с несовершенством технологии изготовления изделий. Каждому способу изготовления изделий свойственны характерные виды дефектов.  [c.9]

Усадочные явления, возникающие в полимерных материалах в результате химических, термических и механических процессов, оказывают существенное влияние на качество изделий, так как они изменяют не только геометрические размеры и форму изделия, но и физико-механические характеристики. Образование дефектов структуры вследствие усадочных явлений обусловлено нарушением условий протекания технологических процессов формирования изделий.  [c.11]

Однако успешному разрешению данной проблемы препятствует ряд причин. Во-первых, современная теория проектирования имеет основное противоречие, которое заключается в том, что все расчетные уравнения теории проектирования носят детерминированную форму, в то время как критерии, входящие в эти уравнения (предельные сопротивления, внешние нагрузки, параметры упругости, геометрические характеристики и т. д.), носят изменчивый характер, обусловленный несовершенством технологии изготовления, изменчивостью состава реального материала, влиянием внешних факторов (температуры, влаги, вибраций и т. д.), а также наличием различных дефектов структуры материала.  [c.105]

Опасность влияния концентрации напряжений на прочность изделий из слоистых пластиков усиливается неизбежными дефектами структуры материала, местами с пузырьками воздуха, с избытком или недостатком полимера — связующего (смолы) и т. п.  [c.102]

ВЛИЯНИЕ ДЕФЕКТОВ И СТРУКТУРЫ СТАЛИ НА РАБОТОСПОСОБНОСТЬ НЕФТЕГАЗОПРОВОДОВ  [c.1]

ВЛИЯНИЕ ДЕФЕКТОВ НА ЭЛЕКТРОННУЮ СТРУКТУРУ И СВОЙСТВА 111-НИТРИДОВ -----  [c.34]


Частицы распыленного порошка суперсплавов обычно имеют сферическую форму и чаще всего для сведения к минимуму влияния загрязнений на критической размер дефектов структуры материала используются мелкодисперсные фракции порошка (от —100 меш, 150 мкм до —325 меш, 43 мкм).  [c.221]

Структура металлов при термоциклировании формируется в несколько стадий. На первой стадии нагревы устраняют дефекты, присутствовавшие в металле в исходном состоянии. Однако под влиянием термических напряжений происходит образование новых дефектов структуры — дислокаций и их скоплений, избыточных вакансий. В результате разупрочнение, имевшее место на первой стадии, сменяется упрочнением. На третьей стадии появляются микротрещины, прогрессирующие от цикла к циклу развитие их приводит к росту крупных магистральных трещин, которые квалифицируются при технической оценке термостойкости как трещины термической усталости. По числу циклов до образования трещин или достижения ими определенных размеров обычно оценивают сопротивление материала термической усталости. О накоплении дефектов при термоциклировании можно судить и по данным изменения физических свойств металлов и сплавов 149, 1851.  [c.13]

Исследована окалиностойкость покрытий Ме—Сг—А1—У, полученных методом электронно-лучевого напыления на сплав ЖС6К, и склонность их к газовой солевой коррозии. Изучены особенности диффузионного взаимодействия одного из наиболее коррозионностойких покрытий Со—Сг—А1—У со сплавом ЖС6К. Обсуждается влияние дефектов структуры электронно-лучевых покрытий на их стойкость. Лит. — 5 назв., ил. — 3, табл. — 2.  [c.270]

Диффузионное перемещение атомов, по крайней мере, в случае вакаисионного механизма может быть реализовано, если в структуре металла имеются дефекты. Поэтому в общем случае естественно ожидать ускорения диффузии по мере уменьшения совершенства кристалла. Влияние дефектов структуры оказывается особенно значительным при пониженных температурах, когда энергия тепловых колебаний и флуктуация их недостаточны для активации диффузионного потока в совершенном кристалле. В этом случае начинают работать участки с дефектной структурой, в которых энергия активации процесса значительно меньше. И хотя количество таких участков может быть невелико, именно они определяют диффузионный поток при низких температурах. В этих условиях обычно наблюдаются малые значения величин Do и Q. Малая величина множителя >о объясняется относительно малым числом участков облегченной диффузии.  [c.118]

Наблюдаемый эффект объясняется влиянием дефектов структуры образованием избыточной концентрации вакансий после закалки (Зинер, Зейтц) или диффузией растворенных атомов вдоль подвижных дислокаций (Тэрнбалл). Более убедительной представляется роль избыточных вакансий. Так, увеличение скорости охлаждения при закалке приводит к ускорению, а ступенчатая закалка (остановка охлаждения при 200° С на несколько секунд) к замедлению (в 10—100 раз) старения.  [c.230]

В 13, 14, 15 и 16 указанной главы приводятся результаты проведенных автором исследований по термическому высвечиванию фотохимически окрашенных щелочно-галоидных кристаллов, не содержащих чужеродных активирующих примесей, выясняется влияние дефектов структуры и действие света, поглощаемого центрами окраски, на термическое высвечивание и устанавливается связь между центрами захвата и различными центрами окраски щелочно-галоидных кристаллов.  [c.6]

Исследование, разработка и экспериментальное подтверждение функциональных теоретических соотношений между пределом прочности и физическими параметрами стеклопластиков представляет значительные трудности, обусловленные сложной структурной неоднородностью композиции, неравнозначностью влияния дефектов структуры и низкого качества компонентов на величины прочности и физических параметров, неравномерностью распределения различных видов напряжения в изделии (сжатие, изгиб, растяжение, сдвиг, кручение и т. д.).  [c.127]

Эти соотношения могут служить мерой структурной неоднородности материала, что согласуется с изложенными выше представлениями о различии и степени влияния дефектов структуры при разрыве и раздире. Поэтому же показатель сопротивления раздиру имеет самостоятельный смысл как характеристика прочности материала в условиях искусственно создаваемой концентрации напряжений, при которой jnia TOK разрушения заранее предопределен и наименее подвержен влиянию случайных дефектов структуры.  [c.204]

На локализацию мест образования шеек оказывают влияние дефекты структуры материала, у которых происходит концентрация деформаций в напболее па-  [c.201]

А м о р ф ные в е ]ц е с т в а, полимер ы. Структурная чувствительность П. в аморфных веществах и полимерах проявляется так же сильно, как в кристаллах. П. силикатных стекол может быть увеличена в десятки раз (от 10 кг/мм до 150 кг мм и выше) подавлением вредного влияния дефектов структуры новерхностиого слон методами травления и закалки. Тонкие стеклянные и кварцевые нити обладают весьма высокой II. (до 1000 кг/м.м ) за сют особенностей структуры мате )иала и отсутс ]вия дефектов.  [c.238]

При изготовлении сварного оборудования возможны дефекты различного происхождения несоответствие конструктивных элементов шва требованиям ГОСТов и других нормативных документов наплывы, прожоги, незаваренные кратеры, подрезы, наружные трещины шва и околошовной зоны, непровары, несплавления, перегрев металла шва, дефекты структуры шва и зоны термического влияния, внутренние трещины, газовые поры, шлаковые включенга.  [c.176]


При уходе атома из узла решетки возможио efo внедрение в решетку. Атомы внедрения — это избыточные атомы, прошедшие в решетку, но не занимающие ее узлов. Небольшие атомы водорода, углерода, кислорода и азота легко образуют дефекты внедрения и решетках металлов. Более крупные дефекты — линейные дислокации и поверхностные дефекты наружная яовер.хность тела, границы зерен и другие внутренние границы. Дефекты структуры оказывают сильное влияние яа электрическую проводимость, прочность, потери на гистерезис в ферромагнитных материалах.  [c.33]

Рэндклифф С. В. Влияние гидростатического давления на дефекты структуры и свойства.— В кн. Механические свойства материалов под высоким давлением. М. Мир, 1973, с. 254—295.  [c.257]

Анализ результатов экспериментальных исследований [ПО] показывает, что для большинства материалов и конструкций условие (1.1) выполняется и дефектами структуры (микронеоднородностью) в большинстве практических расчетов можно пренебречь. Учет влияния микронеоднородности в связи с появлением новых конструкционных материалов приводит к созданию принципиально новых моделей сплошной среды, и xopoufo известны многочисленные работы в этой области [17].  [c.8]

В К, изучается и влияние реальной структуры па фп з. свойства кристаллов. К дефектам структуры чувствительны мн. свойства кристаллов электропроводность, механич., оптич. и др. свойства. Важнейшие задачи К.— установление зависимостей иаменеш1Я физ. свойств кристаллов от их состава, строения и реальной структуры, а также поиск способов управления свойствами материалов и создание новых структур (текстур и композитных материалов) с оптим. сочетанием ряда Boii TB для практич. применения.  [c.515]

Кроме взаимодействия волны с дефектами кристалла структура Н. с. в большой мере определяется взаимодействием волны с осн. структурой. В трёхмерных системах благодаря этому взаи.модействию Н. с. в строгом смысле слова не существуют даже в идеальном кристалле. Можно показать, что при иррациональном отношении Я периода замороженной волны к периоду осн. структуры система обладает большим термодина-мич. потенциалом, чем при любом рациональном значении Я, бесконечно близком к данному иррациональному. Поэтому при данной Т существует бесконечное кол-во устойчивых фаз с разл. (рациональными) значениями Я. При изменении Т равновесная система должна испытать бесконечное число фазовых переходов между этими соразмерными (С) структурами. В большинстве случаев, однако, скачки разл. величин, напр. теплоёмкости, при таких переходах оказываются столь малыми, что свойства системы неотличимы от свойств Н. с. В двумерных системах влияние осн. структуры ослаблено из-за тепловых флуктуаций (роль к-рых возрастает при переходе к системам меньшей размерности). При конечной Т устойчивыми оказываются только соразмерные фазы с не очень большим отношением периодов. На фазовой диаграмме с ними граничат особые Н. с. с ква-зиидальным порядком , когда соответствующие корре-ляц. функции обнаруживают не простое осцилляц. поведение (как для периодич. структуры), а с амплитудой осцилляций, убывающей с расстоянием по степенному закону.  [c.335]

Известно, что электросопротивление металлических твердых тел определяется в основном рассеянием электронов на фононах, дефектах структуры и примесях. Значительное повышение удельного электросопротивления р с уменьшением размера зерна отмечено для многих металлоподобных наноматериалов (Си, Рс1, Ре, N1, N1—Р, Ре —Си—81 —В, К1А1, нитридов и боридов переходных металлов и др.). На рис. 3.14 показаны температурные зависимости электросопротивления наноструктурных образцов никеля, полученных импульсным электроосаждением (/, = 22 - 3 10 нм толщина образца 30—150 мкм). Электросопротивление увеличивается с уменьшением размера зерна, очевидно, в связи с отмеченными ранее дефектами структуры, но изменение фононного спектра и возможное влияние примесей также следует принимать во внимание. В принципе, практически для всех металлоподобных наноматериалов характерно большое остаточное электросопротивление при 7 = — ЮКи малое значение температурного коэффициента электросопротивления (ТКЭ).  [c.65]

Было отмечено благоприятное влияние ковки консолидированного порошкового сплава Rene 95 на его долговечность при малоцикловой усталости [25,27]. Минер и Гайда [25] показали, что при высоких деформациях усталостные свойства при малоцикловых испытаниях сплавов Rene 95, приготовленных горячим изостатическим прессованием, экструзией + ковкой и литьем + деформацией, мало отличаются друг от друга. В то же время при деформациях менее 1% долговечность порошковых сплавов Rene 95 при малоцикловой усталости выше, чем литого и деформированного сплава, что объясняется более мелкозернистой структурой порошковых сплавов. Наивысшей долговечностью, как показано на рис. 17.17, обладает экструдированный и кованый материал [27]. Благоприятное влияние ковки обусловлено двумя причинами во-первых, в процессе обработки происходит более равномерное распределение дефектов по объему материала, а также возможно уменьшение их размеров,и, во-вторых, происходит дальнейшее измельчение зерна. При соответствующем выборе режима термомеханической обработки можно значительно снизить или вообще исключить вредное влияние дефектов типа первичных порошковых границ. Это хорошо видно из результатов анализа разрушения при малоцикловой усталости, представленных в табл. 17.8, которые свидетельствуют о снижении среднего размера дефектов и отсутствии дефектов типа ППГ после термомеханической обработки материала. В этом случае долговечность порошкового материала при малоцикловой усталости определяется наличием в нем небольших керамических включений.  [c.255]

При таких высоких температурах эксплуатации определяющую роль в разрушении играет не дислокационная структура, а диффузионные процессы, имеющие даже при небольших напряжениях направленный характер и способствующие развитию диффузионной ползучести. Так как диффузионные процессы легче всего протекают по границам зерен, имеющих повышенное количество дефектов строения, то кроме химического состава на жаропрочность существенное влияние оказьгеает структура металла. Обьи-но добиваются получения легированного твердого раствора с вкраплениями по границам зерен или внутри них дисперсных карбидных или интерметал-лидных фаз. Более крупное зерно способствует повышению жаропрочности, хотя при этом снижается пластичность. Чрезвычайно важный фактор стабильность структуры, так как перемещение атомов ведет к увеличению ползучести.  [c.175]


Смотреть страницы где упоминается термин Влияние дефектов структуры : [c.316]    [c.352]    [c.172]    [c.199]    [c.137]    [c.634]    [c.11]   
Смотреть главы в:

Строение и свойства металлических сплавов  -> Влияние дефектов структуры

Строение и свойства металлических сплавов  -> Влияние дефектов структуры



ПОИСК



ВЛИЯНИЕ ДЕФЕКТОВ НА ЭЛЕКТРОННУЮ СТРУКТУРЫ И СВОЙСТВА ТП-НИТРИДОВ

Влияние дефектов многослойной структуры на ее оптические параметры

Дефекты структуры



© 2025 Mash-xxl.info Реклама на сайте