Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диффузия в железе

Возможность образования диффузионных покрытий определяется прежде всего различием атомных диаметров металла основы и наносимого вещества. При диффузии в железо элементов с большим атомным диаметром указанное различие не должно превышать 15—16% [24]. В противном случае напряжения, возникающие р кристаллической решетке железа, превосходят предел ее упругой устойчивости. Решетка становится неустойчивой, что и определяет невозможность диффузионного проникновения таких больших атомов в решетку железа.  [c.36]


Диффузия в железе элементов, образующих твердые растворы внедрения  [c.285]

Диффузия в железе элементов, образующих растворы замещения  [c.288]

Влияние на диффузионные процессы некоторых факторов. Коэффициент диффузии в значительно меняется в зависимости от температуры процесса, концентрации диффундирующего вещества, свойств среды, наличия в сплаве третьего компонента, а также от многих других причин. В качестве примера в табл. 28 приведены значения коэффициентов диффузии в железе некоторых наиболее важных элементов при определенных температурах.  [c.206]

Коэффициенты О, см /сек, диффузии в железе некоторых элементов при определенных температурах  [c.207]

Определяющей особенностью бейнитного превращения является то обстоятельство, что оно протекает в интервале температур, когда практически отсутствует диффузия (самодиффузия) железа, но интенсивно протекает диффузия углерода, т. е. интервал бейнитного превращения расположен выше точки d, но ниже точки е Чернова (см. рис. 194).  [c.270]

В твердых растворах внедрения процесс диффузии облегчается тем, что не требуется вывода атома (иона) растворителя в иррегулярное положение, и поэтому энергия активации меньше, чем при образовании твердых растворов замещения. 1-[апример, при диффузии углерода в 7-железе Q 30 ккал/г-атом. В случае диффузии металлов в 7-железе (растворы замещения) Q 60 ккал/г-атом. Коэффициенты диффузии в этих двух случаях различаются в тысячи и десятки тысяч раз. Так, для стали с 0,2% С при 1100°С коэффициент D = 6-10 для диффузии углерода и D = 6-10- для диффузии молибдена.  [c.322]

НАСЫЩЕННАЯ ВОЗДУХОМ ВОДА. При нормальных температурах в воде с нейтральной, а также слабокислой или слабощелочной реакцией заметная коррозия железа имеет место только в присутствии растворенного кислорода. В насыщенной воздухом воде начальная скорость коррозии может достигать 10 г/(м -сут). Эта скорость через несколько дней снижается вследствие образования пленки оксида железа, которая действует как барьер для диффузии кислорода. Стационарная скорость корро-. зии может быть 1,0—2,5 г/(м -сут) и возрастает с увеличением скорости потока. Так как скорость диффузии в стационарном состоянии пропорциональна концентрации Oj, из уравнения (2) следует, что и скорость коррозии железа пропорциональна концентрации Ог- Типичные данные показаны на рис. 6.1, а. В отсутствие растворенного кислорода скорость коррозии как чистого железа, так и стали при комнатной температуре незначительна.  [c.101]


Интенсивность диффузии ионов железа в оксидной пленке -сильно зависит от температуры. На рис, 4.6 показан характер изменения константы скорости окисления железа в водяном паре в координатах Аррениуса. В области температур 570—630 °С происходит качественное изменение характера окисления, что объясняется изменением механизма окисления железа в соответствии с диаграммой равновесия железа в водяном паре.  [c.128]

Высокая твердость поверхностного слоя при нагреве стали с покрытием вызвана борированием, что подтверждается результатами микроструктурного анализа. Глубина борированного слоя достигает 50 мкм. Величина микротвердости (850—950 кгс/мм ) и данные рентгенофазового анализа свидетельствуют, что основной фазой, определяющей повышенную твердость, является твердый раствор бора в железе. Образование борирован-ной зоны является результатом контакта покрытия со сталью и воздействия высоких температур вследствие диффузии бора из расплава в защищаемый металл.  [c.169]

Диффузия конов железа основного металла через слой магнетита в коррозионную среду при эксплуатации котла наблюдается практически постоянно. Как следствие границы раздела фаз магнетит-вода происходит взаимодействие продиффундировавших ионов железа с водой. Одним из продуктов взаимодействия является водород, количество которого в результате протекания этого процесса может составить 0,5- 2,0 мкг/кг.  [c.20]

Группа травителей, содержащих медные соли, наряду со способностью выявлять сегрегации, отличается тем, что под их воздействием на поверхности шлифа, особенно из листов малоуглеродистых (котельных) сталей, появляются своеобразные темные полосы, названные фигурами деформации. Причина их возникновения— пластическая деформация в зонах, нагруженных выше предела упругости. Потемнение полос вызвано процессами выделения (особенно деформацией в сочетании с диффузией атомов внедрения, растворенных в кристаллах). Согласно исследованиям Кестера [40], фигуры деформации возникают преимущественно в результате сегрегации нитрида железа в участках зерен, содержащих дефекты кристаллической решетки. В железных сплавах, в которых азот отсутствует, фигуры деформации не наблюдаются. Выделение нитридов происходит особенно интенсивно в температурном интервале 250—400° С. При температуре около 500° С растворимость азота в железе быстро возрастает. После длительных выдержек нитриды выделяются и при комнатной температуре.  [c.60]

Высокая химическая и коррозионная стойкость алмаза даже смесь соляной и азотной кислот ( царская водка ) не оказывает на него никакого влияния. Однако алмаз растворяется в расплавах щелочей, селитрах и соде. Главной же особенностью алмаза, как модификации углерода, является его химическое сродство к железу, никелю и некоторым другим металлам. Это свойство накладывает определенное ограничение на применение алмаза для обработки сталей при нагреве до 750—800 G начинает проявляться взаимодействие алмаза со сталью, развиваются процессы диффузии, в результате чего поверхность алмаза повреждается. Вопросы указанного взаимодействия изуч ены пока недостаточно, вместе с тем, практика подтверждает высокую эффективность применения алмазов при шлифовании.  [c.57]

С. 3. Бакштейном, чл.-корр. АН СССР С. Т. Кишкиным и др. был разработан метод авторадиографии металлов и проведены исследования диффузии олова, железа, хрома и углерода в различных металлах.  [c.190]

Хром и алюминий способствуют резкому повышению жаростойкости при введении их в железо. При этом чем выше содержание хрома в железе, тем меньше требуется алюминия для получения высокой жаростойкости, и наоборот, чем выше содержание алюминия в сплаве, тем меньше требуется хрома в нем для получения той же жаростойкости. Сплавы, содержащие около 25% Сг и 5% А1, обладают очень высокой жаростойкостью до 1300° С. Сплавы, содержащие около 65% Сг и 10% А1, при 1400 С имеют потери в весе порядка 0,25 г/ж -ч. Содержание алюминия в сплаве в процессе окисления может изменяться вследствие преимущественной диффузии алюминия из поверхностных слоев металла в окисную пленку. Содержание алюминия в поверхностных слоях уменьшается тем больше, чем ближе слой находится от поверхности и чем длиннее испытания, что имеет большое значение для тонких проволок и ленты.  [c.221]


Изучение кинетики приведенных выше реакций показывает, что скорость их существенно зависит от образования на поверхности стали защитного слоя из окислов железа. Окисление железа перегретым паром детально исследовано при его протекании целесообразно различать первичное и постоянное образование защитного слоя. Первичное образование защитных окисных пленок охватывает все процессы, которые проходят на гладкой металлической поверхности до образования сплошного слоя магнетита. На основе измерений содержания водорода в паре установлено, что эти первичные процессы заканчиваются примерно после двух дней работы котла. В течение этого периода защитные пленки продолжают постоянно расти. Процесс контролируется диффузией ион-атомов железа через слой магнетита от металла к коррозионной среде. На внешней стороне слоя магнетита эти ионы окисляются паром с образованием окислов. Поэтому слой магнетита продолжает расти со стороны пара, а не со стороны поверхности раздела железо-магнетит. Очевидно, что описанный процесс со временем должен замедляться, так как утолщение слоя окисла железа затрудняет процесс диффузии. В этот период рост толщины слоя окиси железа d пропорционален корню квадратному из времени контакта железа с паром т, т. е. подчиняется параболическому закону  [c.28]

Второй, более рыхлый слой магнетита образуется паза диффузии ионов железа в воду. Диффузионные потоки ионов железа в воду и кислорода к металлу из воды через слой окислов почти равновелики. Ионы железа, проникающие в воду, после реакции с ионами кислорода оседают на стенки трубы в виде кристаллов рыхлого слоя магнетита. Возможно, что часть этих кристаллов уносится потоком воды или пароводяной смеси.  [c.69]

Растворимость водорода в стали увеличивается пропорционально корню квадратному из парциального давления и возрастает по экспоненте с увеличением температуры при постоянном парциальном давлении водорода. При повышении температуры от 300 до 500°С растворимость водорода в железе увеличивается в пять раз. Легирующие элементы относительно слабо влияют на растворимость водорода в стали, но могут существенно изменять скорость диффузии.  [c.83]

Все разобранные процессы относятся к конвективному переносу массы, в котором большую роль играет относительное движение различных элементов среды. Точно так же, как принято различать конвективный перенос тепла и передачу тепла теплопроводностью, термин диффузионный перенос вещества может быть использован для обозначения процессов, в которых отсутствует очевидное относительное движение. Примером является цементация стали брусок пудлингового железа помещается в печь вместе с материалом, содержащим углерод. Через некоторое время железо приобретает свойства стали (по крайней мере наружные слои бруска) в результате диффузии углерода в металл. Конвективный перенос массы можно, несомненно, рассматривать как диффузию в движущейся среде.  [c.26]

Степень завершения гомогенизации при сварке зависит от 7 тах, диффузионной ПОДВИЖНОСТИ элементов, времени пребывания при температурах гомогенизации и исходной макро- и микрохимической неоднородности. Максимальная степень гомогенизации соответствует участкам ОШЗ, нагреваемым до Тс, учитывая, что коэффициенты диффузии элементов увеличиваются с повышением температуры в экспоненциальной зависимости. С наибольшей скоростью гомогенизация происходит по С, с меньшей — по S, Р, Сг, Мо, Мп, Ni, W в приведенной последовательности (коэффициенты диффузии в железе при 1373 К составляют для С 10 " и для остальных элементов 10 ...10 м / ). Время пребывания при температурах гомогенизации зависит от теплового режима сварки, а также от класса применяемых сварочных материалов. Последнее связано с дополнительным нагревом ОШЗ выделяющейся теплотой затвердевания шва (аналогично их влиянию на степень оплавления ОШЗ). Степень влияния металла шва определяется Гс.мш.Чем она выше, тем при более высоких гомологических температурах происходит дополнительный нагрев ОШЗ. При переходе от сравнительно тугоплавких ферритно-перлитных сварочных материалов к более легкоплавким аусте-нитным время пребывания ОШЗ свыше 1370 К уменьшается примерно в 1,5 раза. Весьма существенно влияет исходное состояние стали. Наличие труднорастворимых крупных скоагули-рованных частиц легированного цементита и специальных карбидов, например после отжига стали на зернистый перлит, заметно снижает степень гомогенизации.  [c.515]

Добавки УДП никеля наиболее эффективны в виде химических соединений, восстанавливающихся в процессе спекания порошкового материала. В ряду соединений NiO, Ni(N03)2, Ni 204 максимальной скоростью диффузии в железо характеризуется никель, восстановленный из оксалата. Введение 0,2...0,3 % (масс.) УДП никеля активирует процесс спекания материалов из смеси железа и никеля и повышает плотность спекаемого материала на 4 %. При этом температура спекания снижается на 200 °С, а время спекания сокращается в 4 раза. Свойства спеченных материалов представлены в табл. 4.8.  [c.278]

В промышленности наиболее широко применяют процессы химико-термической обработки, основанные на диффузии в железо (сталь) неметаллов углерода (цементация), азота (азотирование) и бора (борирование). Эти элементы, имеющие малый атомный радиус, образуют с железом твердые растворы виедрепия. Диффузия атомов С, N и В протекает по междоузельному механизму и не требует образования и миграции вакансии, поэтому в решетке железа эти элементы занимают часть межатомных октаэдрических междоузлий.  [c.285]

При диффузии в железо углерода и авота, образующих твердые растворы внедрения, диффузия будет протекать значительно легче, чем при насыщении железа (стали) металлами илг другими элементами, образующими твердые растворы замещс ния.  [c.193]


Эти результаты по определению начала заметной диффузии компонентов твердого сплава в железо не расходятся с данными М. Г. Окнова и Л. С. Мороза [225 ], И. С. Гаева [62 ], [63], Д. А. Прокошкина [240], Сайкса [334], [335], Бэррера [52] и др., изучавших механизм диффузии в железо при цементации последнего отдельными элементами и химическими соединениями. Например, М. Г. Окнов и Л. С. Мороз показали, что при цементации железа карбидом вольфрама заметная диффузия начиналась после 950° и при цементации карбидом титана после 1050° (см. табл. 50). При температуре 900° и выдержке 50 час. они не могли обнаружить диффузию компонентов карбида вольфрама в железо.  [c.215]

В настоящее время считается, что при окислении железа определяющими факторами являются диффузия ионов железа в слоях вюстита и магнетита и диффузия ионов кислорода в слое гематита. При этом не следует полностью пренебрегать диффузией кислорода в РеО и Рез04.  [c.63]

Барденгеймер и Мюллер [17], исследовавшие диффузию железа из слоев, нанесенных методом пульверизации, указывают, что при одновременном наличии в железе хрома и никеля последний диффундирует значительно быстрее, а хром медленнее, чем если бы эти элементы присутствовали в отдельности. Авторы [17] объясняют это различие в скоростях диффузии присутствием окислов. Если ввести в железо один никель, который благороднее железа, то он не может удержать введенные при пульверизации окислы, и на железе образуется слой окисной пленки, препятствующий диффузии никеля. Если же пользоваться чистым хромом, который имеет большое сродство к кислороду и прочно удерживает окислы, то неокиспенный остаток хрома может диффундировать беспрепятственно. При наличии никеля и хрома последний поглощает кислород, и никель легко диффундирует. Если брать хром и алюминий, то из-за связывания алюминием кислорода облегчается диффузия хрома.  [c.21]

После насыщения поверхность образцов имела равномерный светло-серый цвет. Толщина диффузионного покрытия при 1000° С составила 0.014 мм, а при 1100° С — 0.020 мм. Микротвердость поверхности достигала Нр1оо=1350—1400 кг/мм . В соответствии с литературными данными [2] поверхностный слой состоит в этом случае из карбидной фазы СгззСе. Под этим слоем находится смесь твердого раствора хрома в железе и карбида СгазСд. Микротвердость этого слоя составляет 920 кг/мм . Затем следует перлитная полоса, образующаяся в результате встречной диффузии углерода к диффузионному слою.  [c.162]

Диффузионное силицирование. Диффузионные слои из крем-> ния получить гораздо труднее, чем из хрома или алюминия. Железо диффундирует в кремний намного быстрее, чем кремний в железо, что затрудняет образование кремнистого феррита. При этом образуется хрупкое соединение F aSi, появляются поры и нанесенный слой легко отделяется в процессе продолжающейся диффузии.  [c.107]

Спеченные материалы (САС). Получение сплавов с минималь. ным количеством окиси алюминия при использовании для легирования элементов переходной группы (железо, хром, никель и др.), образующих с алюминием малорастворимые в твердом состоянии интерметаллические соединения. В опытном производстве были получены спеченные сплавы [52, 54, 55] из легированных алюминиевых порошков, полученных распылением, содержащие до 0,5% AI2O3. Наиболее перспективными легирующими элементами являются Сг и Fe, незначительно растворяющиеся и имеющие пониженный коэффициент диффузии в алюминии. Эти элементы образуют с алюминием интерметаллические соединения СгА1, и FeAig, образующиеся в виде дисперсных частиц. Средние размеры их не превышают 0,5—1 м/с, расстояние между ними находится в этих же пределах, чем и объясняется повышенная прочность и стабильность структуры получаемых сплавов. Высокие скорости кристаллизации при распылении порошков и возможность значительного перегрева расплава способствуют удерживанию в частицах порошка (зерне) большей концентрации легирующего компонента в твердом растворе. После длительной выдержки при 400° С рекристаллизация отсутствует, в то время как в литом сплаве при этих условиях она полностью завершается.  [c.111]

Захарова М. И., Исследование явления диффузии меди в железо в связи с пзготовление.м биметаллов, Цветные металлы Afe 4, 3932.  [c.246]

Окисная пленка на поверхности корродирующего металла образуется за счет диффузии ионов железа через магнетит. На границе раздела окисла и воды ион железа реагирует с гидроксилом или молекулой воды и образует гидрат закиси железа, в итоте образуется магнетит. В воде при температуре 300°С за счет взаимодействия с железом гидрат окиси железа также переходит в магнетит. С течением времени толщина окисной пленки увеличивается, а диффузия попов железа через нее затрудняется. Это обстоятельство ведет к уменьшению скорости коррозии -во времени.  [c.33]

При испытаниях в нейтральной среде скорость коррозии низколегированных сталей в начальный период времени уменьшается во времени, однако через 80—100 суток она становится неизменной. Д. Л. Дуглас и Ф. К. Цицес [111, 12] считают, что к этому моменту пленка достигает предельной толщины, становится пористой, и скорость диффузии ионов железа через нее поддерживается на постоянном уровне. Поскольку, по данным тех же авторов, наличие на поверхности металла окисной пленки, образовавшейся в процессе отжига при температуре 800° С, не изменило скорости коррозии железа, измеренной по количеству выделившегося водорода, очевидно, диффузия через окисную пленку не является стадией, полностью определяющей эффективность коррозионного процесса в этом случае. Скорость катодного процесса на образцах с окисной пленкой, полученной при оксидировании и образовавшейся при окислении на воздухе, и на образцах без искусственной пленки, почти что одинакова, а это также свидетельствует о том, что диффузия через окисную пленку не влияет на скорость коррозии. При температуре ниже 200° С эффективность коррозионного процесса железа определяется скоростью реакции, протекающей на поверхности раздела металл — вода. Однако, по мнению этих авторов, скорость диффузии ионов железа через окисную пленку и в этом случае оказывает некоторое (но не определяющее) влияние на скорость коррозионного процесса.  [c.101]

Кроме горячего цинкования железа путем погружения его на 1,5—5 мин в расплавленный цинк с температурой 440—450° С с целью получения цинкового покрытия, ойтадающего высокой коррозионной стойкостью, небольшое применение имеет также метод диффузионного цинкования. При ьтом методе на поверхности стали создается слой железо-цинкового сплава за счет диффузии цинка в железо. Процесс ведется в течение 1—3 ч при температуре 360—380" С в порошке цинка в печи с вращающейся ретортой или в ящиках (в этом случае к порошку предварительно добавляется 1% соляной кислоты для образования хлорида цинка).  [c.182]

Диффузионный нагрев. Диффузия алюминия в железо начинается при температуре 800—850° С- Р1аибольшее проникновение алюминия достигается при температуре до 1050° С.  [c.240]

Анализ показал, что протечка связана с трещинообразова-нием в результате внутренних напряжений, вызванных наклепом при предварительной механической обработке (прокатке, гибке и пр.), а также сварке. Поверхностный слой труб парогенератора подвергается двоякому действию с одной стороны, он находится в контакте с жидким металлом и постепенно растворяется им, с другой, — поверхность стали подвержена разрушающему действию воды вследствие ее термической диссоциации при высоких температурах и диффузии водорода в стенку трубы. Большая растворимость водорода в железе, никеле и других металлах [I—3] с образованием гидридов и увеличением периода кристаллической решетки металла (при 400° G, например, достигается растворимость водорода в железе 138 см /100 г) вызывает появление напряженного состояния, повышает хрупкость, твердость, меняет другие механические свойства. Удаление водорода отжигом вызывает появление звездообразных трещин.  [c.269]


Процесс формирования оксидной пленки при комплексонной обработке не связан с диффузией ионов железа с поверхности стали на границу пленки, т. е. механизм образования оксидной пленки в данном случае отличен от электрохимических реакций коррозии в процессе эксплуатации. Образование оксидной магнетитной пленки в процессе трилонной обработки связано только с термическим разложением комплексоната железа в условиях контакта его раствора со сталью при высоких температурах. Защитные свойства образующейся пленки подтверждаются также и электрохимическими исследованиями (рис. 9-3).  [c.91]


Смотреть страницы где упоминается термин Диффузия в железе : [c.95]    [c.168]    [c.25]    [c.56]    [c.72]    [c.22]    [c.173]    [c.158]    [c.204]    [c.358]    [c.33]    [c.44]    [c.101]    [c.89]    [c.33]   
Термическая обработка в машиностроении (1980) -- [ c.285 ]



ПОИСК



Диффузия

Диффузия и окклюзия водорода в железе и его сплавах — Формы существования водорода в железе и стали

О температуре начала диффузии между металлокерамическим твердым сплавом и железом



© 2025 Mash-xxl.info Реклама на сайте