Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефекты реальных кристаллов

То, что будет излагаться ниже, относится к определению структуры идеальных кристаллов, т. е. кристаллов без дефектов. Реальные кристаллы — это кристаллы с наличием самых разнообразных дефектов (вакансии и междоузельные атомы, дивакансии, дислокации, дефекты упаковки, включения второй фазы и др.). Изучение структуры реальных кристаллов, естественно, представляет более трудную задачу, и в настоящее время во многих лабораториях занимаются исследованием реальной структуры. Эти лаборатории оснащены целым арсеналом современного оборудования, включающего дифракционную, электронно-микроскопиче-скую и другую аппаратуру.  [c.36]


ДЕФЕКТЫ РЕАЛЬНЫХ КРИСТАЛЛОВ  [c.22]

Ли ней ныв дефекты. реальном кристалле атомы располагаются правильно лишь в пределах блоков — небольших участков в каждом из зерен (кристаллитов). Блоки внутри зерна повернуты относительно друг друга на небольшие углы (от нескольких долей до единиц градусов). Они обычно имеют размеры 0Д...1 мкм, что в 1—3 раза меньше размеров зерен, и состоят из 2000... 10 ООО атомов.  [c.33]

За редкими исключениями, кристаллы и кристаллиты, образующие поликристаллы, обладают различными типами структурных дефектов. Знание типов, способов образования, а также влияния структурных дефектов на различные процессы и свойства твердых тел совершенно необходимо для современных специалистов по физике твердого тела. Понятие реальный кристалл чрезвычайно широко. При малой концентрации структурных несовершенств реальный кристалл в пределе переходит в идеальный, приобретая качественно новые свойства. При большом содержании дефектов реальный кристалл в пределе приобретает аморфную структуру и свойства, характерные для аморфного состояния. Воздействие на реальную структуру твердых тел является одним из способов управления их свойствами. Например, в зависимости от концентрации точечных дефектов коэффициент диффузии в металлах может меняться на семь порядков, в таком же диапазоне меняется электропроводность полупроводника. Техническая прочность твердых тел отличается от теоретической (предельной) на три-четыре порядка. Исключив возможность влияния несовершенств, можно реализовать теоретическую прочность. Каждому понятно, насколько это важно для практических целей.  [c.6]

Образование дефектов. Реальные кристаллы всегда имеют неоднородное распределение примесей. Примеси изменяют параметры крист, решётки, и на границах областей разного состава возникают внутр. напряжения. Это приводит к образованию дислокаций и трещин. При К. иэ расплава дислокации возникают как результат термоупругих напряжений в неравномерно нагретом кристалле, а также нарастания более горячих новых слоёв на более холодную поверхность. Дислокации могут наследоваться , переходя из затравки в выращиваемый кристалл.  [c.321]

Недавние исследования Аракеляна [89] показали, что дефекты плотности необходимо рассматривать как неотъемлемое свойство кристаллических веществ. Пикнометрическая плотность р равная количеству массы, приходящейся на единицу объема, является характеристикой реального кристалла, тогда как рентгенографическая плотность характеризует идеальный кристалл. Изменение плотности реального кристалла относительно ее теоретического значения назовем дефектом плотности и обозначим индексом 6р.  [c.194]


Мы не занимаемся здесь вопросом об определении самого движения дислокаций по приложенным к телу силам. Решение этого вопроса требует детального изучения микроскопического механизма движения дислокаций и их торможения на различных дефектах, которое должно производиться с учетом фактических данных о реальных кристаллах.  [c.165]

Реальные кристаллы отличаются от идеализированной модели наличием достаточно многочисленных нарушений регулярного расположения атомов. Любое отклонение от периодической структуры кристалла называют дефектом. Дефекты структуры оказывают существенное, порой определяющее, влияние на свойства твердых тел. Такими структурно-чувствительными, т. е. зависящими от дефектов структуры, свойствами являются электропроводность, фотопроводимость, люминесценция, прочность и пластичность, окраска кристаллов и т. д. Процессы диффузии, роста кристаллов, рекристаллизации и ряд других можно удовлетворительно объяснить исходя из предположения об их зависимости от дефектов. В  [c.84]

В реальных кристаллах всегда имеются примеси чужеродных атомов. При наличии точечных дефектов (вакансий и междоузельных атомов) возможно образование комплексов дефект — примесь. Естественно, что образование таких комплексов определяется как концентрацией примеси, так и концентрацией дефектов. В условиях термического равновесия концентрацию таких комплексов можно определить таким же методом, каким мы пользовались при рас-  [c.92]

Рассмотрим две кристаллические решетки одну реальную, содержащую дефекты различного типа, и другую — идеальную, не содержащую никаких дефектов. Предположим, что в реальной решетке имеются только искажения, вызванные упругими деформациями, тепловыми колебаниями атомов и т. п. В этом случае, несмотря на некоторые нарушения структуры, можно безошибочно указать, к каким узлам решетки идеального кристалла относятся соответствующие атомы в реальном кристалле. Взаимно однозначное соответствие между атомами реального и идеального кристаллов можно установить и при наличии в реальном кристалле точечных дефектов. При этом в ряде мест реальной решетки атомы могут отсутствовать, в каких-то местах могут появиться лишние атомы, но в остальном она будет совпадать с идеальной. Любую область реального кристалла, где можно установить взаимно однозначное соответствие с идеальным кристаллом, называют областью хорошего кристалла. Участки, где такое соответствие установить нельзя, называют областью плохого кристалла.  [c.98]

Во всех реальных кристаллах одновременно содержатся и дислокации и точечные дефекты. Между ними всегда есть некоторое взаимодействие. Дело в том, что даже вокруг простейших дефектов — вакансии и междоузельного атома — существуют поля упругих напряжений. Ясно, что междоузельный атом является сильным центром отталкивания и вызывает в решетке напряжение сжатия. Вакансия обычно, наоборот, стремится стянуть решетку вокруг себя и, следовательно, является относительно сильным центром растяжения. Области сжатия и растяжения, как мы видели, существуют и вокруг краевых дислокаций. Поэтому между дислокациями, имеющими краевую компоненту, и точечными дефектами возникает упругое взаимодействие. Междоузельные атомы и вакансии притягиваются к дислокации. В области растяже- ния возникает повышенная концентрация междоузельных атомов и пониженная концентрация вакансий, а в области сжатия —наоборот (рис. 3.26).  [c.108]

Точечные дефекты и примесные атомы взаимодействуют также и с винтовыми дислокациями. В большинстве реальных кристаллов в силу анизотропии искажения, создаваемые дефектами, являются несимметричными. Это и приводит к взаимодействию их со скалывающими напрял ениями вокруг винтовой дислокации. Таким образом, разница между винтовой и краевой дислокациями в этом от-нощении не так велика, как может показаться сначала.  [c.109]

Кроме примесей и дефектов любой реальный кристалл содержит еще одно нарушение периодичности, связанное с его поверхностью. До сих пор мы не учитывали наличие поверхности, предполагая кристалл бесконечным или вводя циклические граничные условия. Однако в 1932 г. И. Е. Таммом было показано, что кроме  [c.240]


Взаимодействие с решеточными волнами идеальное сопротивление ). В идеально периодическом потенциальном поле электроны не рассеивались бы, тепловое равновесие не могло бы установиться и -было бы бесконечным. Однако в реальных кристаллах статические дефекты и решеточные колебания вызывают отклонения от периодичности. Рассеяние дефектами решетки может быть описано формулой (13.8)  [c.260]

Можно указать на несколько факторов, вызывающих появление подобных дефектов. К ним относятся в первую очередь кинетические факторы, связанные с тем, что кристалл не успевает стать идеальным в процессе кристаллизации и последующей обработки. Далее следует указать, что при не слишком низких температурах из-за конкуренции энергетического и энтропийного факторов присутствие в кристалле некоторого количества дефектных мест будет отвечать термодинамическому равновесию. Наконец, уже созданные идеальные кристаллы могут оказаться испорченными под влиянием факторов (механической обработки, действия радиации), нарушающих строгую периодичность расположения атомов. По этим причинам реальные кристаллы имеют дефекты, и физические свойства кристалла формируются под совместным действием строгой периодичности и отступлений от нее. Можно привести немало примеров, свидетельствующих о важности учета вклада дефектов в формирование свойств материалов. Так, без учета этого вклада оказалось невозможным построение теории прочности и пластичности материалов, поскольку эти характеристики определяются степенью сопротивления тела действию сил, смещающих разные части тела относительно друг друга. Под действием радиации (мощные световые потоки, пучки электронов, нейтронов, заряженных ядер и т. д.). отдельные атомы или группы атомов оказываются выбитыми из своих правильных положений, и поэтому структура и свойства облученных материалов необъяснимы без оценки роли дефектов и т. д. В связи с этим важной составной частью физики твердого  [c.228]

Одной из форм дефектов решетки являются рассмотренные выше тепловые колебания атомов, которые могут взаимодействовать со статическими дефектами решетки и в ряде случаев стимулировать их появление. В общем случае под дефектом можно понимать любое элементарное возбуждение кристалла, а состояние реального кристалла — возбужденным состоянием.  [c.229]

За последние десятилетия в физике твердого тела получило широкое распространение представление о несовершенствах кристаллической решетки, называемых дислокациями. Этим несовершенствам приписывается основная роль при объяснении ряда особенностей поведения реальных кристаллов. Механизм пластической деформации, ползучести, разрушения, рассеяния энергии при циклическом деформировании связываются большинством современных авторов с перемещением дислокаций внутри кристалла. Дислокационные представления используются также для объяснения механизма роста кристалла. Возможные дефекты кристаллической решетки не ограничиваются, конечно, одними дислокациями этим термином называются дефекты особого рода, обладающие совершенно определенными свойствами. Однако дислокационные представления, как оказалось, имеют настолько общий характер, что на их основе можно построить очень большое количество разного рода моделей, объясняющих те или иные свойства реального кристалла, и выбрать из этих моделей те, которые наилучшим образом отвечают опытным данным.  [c.453]

Модуль упругости Е практически не зависит от химического состава и термической обработки стали. Приведенный здесь предел прочности установлен экспериментальным путем. Он во много раз (в 100 раз и более) меньше теоретических значений, подсчитанных исходя из сил межатомных связей. Это объясняется отклонением строения реальных кристаллов металла от идеального строения кристаллических решеток, т. е. несовершенством (дефектами) кристаллических решеток реальных металлов. Наибольшее влияние на снижение прочности металла оказывают  [c.37]

Экспериментальные данные показывают, что в реальном кристалле изменение теплоемкости в области фазовых переходов связано с влиянием дефектов кристаллической решетки. Наибольшее влияние оказывают термодинамически точечные равновесные дефекты, т. е. вакансии и межузельные атомы, так как они проявляются во всех условиях и притом наиболее значительно. Энергия образования межузельных атомов больше энергии образования вакансий. Поэтому главное значение имеют вакансии. Возрастание теплоемкости кристалла с приближением к точке перехода обусловлено изменением его параметра порядка. Изменение параметра порядка кристалла означает вместе с тем изменение концентрации вакансий, например, при температурах, меньших температуры перехода Т, концентрации вакансий с повышением температуры увеличиваются, а параметр порядка уменьшается, достигая нулевого значения в точке перехода. Изменение параметра порядка происходит скачкообразно при фазовых переходах первого рода и непрерывно при переходах второго рода.  [c.238]

Очевидно, что у реального кристалла, содержащего дефекты структуры, растворению в первую очередь подвергаются дефектные места нй поверхности.  [c.109]

Реальные кристаллы всегда имеют всевозможные дефекты, нарушающие строгую периодичность пх структуры и оказывающие сильное влияние практически на все их свойства — электрические, механические, оптические и др. Рассмотрим кратко наиболее важ-. ные дефекты кристаллов.  [c.22]

Несовершенства (дефекты) строения реальных кристаллов металла. Описанная в предыдущем разделе кристаллическая решетка является идеальной. На основе физики твердого тела теоретически найдены механические характеристики, которые должны быть у кристаллов строго идеальной структуры. Сопоставление этих характеристик с обнаруживаемыми в опыте показывает значительное (в десятки и даже в сотни раз) превышение теоретическими значениями опытных. Последнее расхождение объясняется тем, что в реальных кристаллах всегда имеются отклонения от идеального характера атомной решетки, называемые несовершенствами или дефектами строения кристаллов ). Известны различные типы дефектов классификация их дана в табл. 4.3.  [c.233]


В реальном кристалле металла имеются дефекты строения, которые принято делить на три группы точечные, линейные и поверхностные. Точечные дефекты малы во всех измерениях. Линейные дефекты охватывают в длину многие ряды атомов, однако их протяженность в двух других измерениях очень мала. Поверхностные дефекты малы только в одном измерении.  [c.12]

В реальных кристаллах источниками и стоками вакансий являются свободные поверхности, границы зерен и блоков, трещины и поры, линейные краевые дислокации и дефекты упаковки атомов, царапины на поверхности и др. При этом т]в = —  [c.74]

ИДЕАЛЬНЫЙ КРИСТАЛЛ — физ. модель, представляющая собой бесконечный монокристалл, не содержащий примесей или структурных дефектов (вакансий, межу. ельных атомов, дислокаций и др.). Отличие реальных кристаллов от И. к. связано с конечностью их размеров и наличием дефектов. Наличия нек-рых до-  [c.98]

Несовершенства строения реального кристалла (точечные дефекты, дислокация, деформации и т. д.), ес-МШ их присутствие не ведёт к изменению рассеивающей  [c.75]

Образование доменов. Особенностью С. ф. п. по темп-ре является образование доменов в кристалле при Т<Т,. Поскольку температурное воздействие является скалярным, т. е. не имеет направленности (в отличие, напр., от воздействия механического), то в соответствии с Кюри принципам точечная симметрия кристалла не должна изменяться. Это и приводит к появлению доменной структуры (см. Домены). Симметрия в пределах каждого домена ниже симметрии исх.одного кристалла, однако расположение доменов определяется элементами симметрии, утраченными при переходе (в простейшем случае образуются т. н. антифазные домены). При образовании доменов в реальном кристалле существенны энергетич. факторы, граничные условия, дефекты и т. п. [5).  [c.8]

При небольших статич, нагрузках у всех Т. т. наблюдается линейное соотношение между напряжением и деформацией (закон Гука). Упругая деформация обратима — при снятии напряжения она исчезает. Для идеального монокристалла (без дефектов) область обратимой деформации должна была бы наблюдаться вплоть до разрушения, причём предел прочности должен был бы соответствовать силам связи между атомами. Прочность реального кристалла не соответствует силам связи между атомами.  [c.45]

В 1922 А. Ф. Иоффе объяснил низкую прочность реальных кристаллов влиянием макроскопич. дефектов (трещин, надрезов) на их поверхности. В дальнейшем оказалось, что при больших механич. нагрузках реакция кристалла зависит от наличия и кол-ва в кристалле дефектов, в частности дислокаций. В большинстве случаев именно дислокации определяют пластичность Т. т.  [c.45]

Существование в реальном кристалле, помимо его основного структурного состояния, целой совокупности других локальных структур обусловлено фактором производства энтропии при движении сильно неравновесного твердого тела к равновесию. При небольшой плотности этих сторонних локальных структур их классифицируют как дефекты реального кристалла, при большой — как аморфное состояние. Получить из смеси нескольких структур сильно возбужденного кристалла одну, идеальную в основном состоянии,— задача сверхсложная. По-видимому, единственный случай ее решения — бечи фектные нитевидные кристаллы. В общем случае в реальном 1 1>1 сталле всегда неизбежна примесь метастабильных локальных ст1 1 тур, т. е. дефектов, которые наследуются из смеси структурных состояний сильно возбужденного кристалла.  [c.6]

Локальные песовершенства (дефекты) в строении кристаллов пр11сущи всем металлам. Эти нарушегтя идеальной структуры твердых тел оказывают существенное влияние на нх физические, химические, технологические и эксплуатационные свойства. Без использования представлений о дефектах реальных кристаллов невозможно изучить явления пластической деформации, упроч-нени.е и разрушение сплавов и др.  [c.9]

В I главе рассматривались дислокации ак реально существующие дефекты в реальных кристаллах. В существовании ди-сло1каций сейчас никто не сомневается, но в 30—50-х годах этот вопрос слухшл темой многочисленных дискуссий.  [c.66]

В любом реальном кристалле всегда имеются дефекты строения. Дефекты кристаллического строения подразделяются по геометрическим признакам на точечные (нульмерные), линейные (одномерные) и поверхностные (двумерные).  [c.19]

В отличие от закалки металлов с высоких температур при облучении образуется одинаковое количество вакансий и межузельных атомов. Если бы процесс нарушений при облучении сводился только к образованию пар Френкеля и их рекомбинации, то можно было бы относительно просто представить условия равновесной рекомбинации антинарушений и установить период самовосстановления структуры и свойств материала. В какой-то мере такая картина изменения дефектной структуры, по-видимому, может реализоваться после облучения до малых доз совершенных кристаллов ( усов ). В действительности даже при наличии только изолированных точечных дефектов в решетке реальных кристаллов наряду с рекомбинацией протекают более сложные процессы взаимодействия точечных дефектов друг с другом с образованием двойных, тройных и т. д. комплексов, кластеров. Каждый из первичных дефектов может взаимодействовать с примесными атомами, дислокациями, границами раздела. В результате этого возникают комплексы вакансия — атом примеси, внедренный атом — атом примеси, пороги и суперпороги на дислокациях, изменяется перераспределение элементов в растворе, состояние границ раздела, конфигурация дислокаций.  [c.60]

Образование дефектов. Посторонние газы, раствори-м1.те в растворах и расплавах лучше, чем в кристаллах, выделяются на фронте К. Пу.зырьки газа захватываются растущим кристаллом, если они превышают критич. размер, убывающий с увеличепием скорости роста (аиа-логичио захватываются твёрдые частицы). При К. в невесомости конвективный отвод пузырьков от фронта К. затруднён и кристалл обогащается газовыми включениями. Специально создавая пузырьки, получают пен о материалы. Реальные кристаллы всегда имеют зонарно и секториально распределённые примеси, к-рые изменяют параметр решётки, что вызывает внутр. напряжения, дислокации и трещины. Последние возникают также из-за несоответствия параметров решёток затравки (подложки) и нарастающего на ней кристалла. Источниками внутр. напряжений И дислока-  [c.501]

Влияние внешнего электрического поля на доменную структуру, в С. доменные стенки могут смещаться под действием электрич. поля, причём объём доменов, поляризованных по полю, увеличивается за счёт доменов, поляризованных против поля. Возможно также и зарождение новых доменов, поляризация в к-рых ориентирована вдоль Е. В реальных кристаллах доменные стенки обычно закреплены на дефектах и неоднородностях, т. е., для того чтобы перейти из одного положения в другое, доменной стенке нужно преодолеть знер-гетич. барьеры. В сильных электрич. полях эти барьеры сглаживаются и стенка может перемещаться по образцу относительно быстро. Возможно и перемещение стенки в слабых полях за счёт термоактивац. преодоления барьера, это перемещение может быть очень медленным. Энергетич. барьеры для перемещения стенки существуют и в бездефектных кристаллах благодаря дискретности атомной структуры, аналогично т. н. барьеру Пайерлса для перемещения дислокаций.  [c.478]


Смотреть страницы где упоминается термин Дефекты реальных кристаллов : [c.136]    [c.25]    [c.14]    [c.19]    [c.29]    [c.24]    [c.31]    [c.597]    [c.619]    [c.503]    [c.625]   
Смотреть главы в:

Физические основы конструирования и технологии РЭА и ЭВА  -> Дефекты реальных кристаллов



ПОИСК



Дефекты в кристаллах

Дефекты в кристаллах дефектов

Дефекты строения реальных кристаллов

Реальные кристаллы

Реальный газ

Строение реальных кристаллов и дефекты кристаллической решетки

Строение реальных металлов. Дефекты в кристаллах

Термическое высвечивание и дефекты структуры реальных кристаллов



© 2025 Mash-xxl.info Реклама на сайте