Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагрузки, деформации и напряжения

НАГРУЗКИ, ДЕФОРМАЦИИ И НАПРЯЖЕНИЯ  [c.16]

При динамической нагрузке деформации и напряжения получаются большими, чем при статическом действии силы, поэтому при проектировании и эксплуатации машин и сооружений их стремятся избегать за исключением тех случаев, когда удар создается специально для получения большего эффекта (удар молотом, бабой для забивки свай и т. п.).  [c.289]

Первый член ряда соответствует равномерно распределенной радиальной нагрузке. Деформации и напряжения от этой составляющей вычисляют по формулам теории осесимметричной деформации цилиндрических оболочек (см. гл. 8). Эги напряжения и деформации сравнительно малы и при удалении от верхнего края быстро затухают.  [c.373]


Нагрузки, деформации и напряжения  [c.57]

Можно утверждать, что достижение нагрузками критических значений равносильно разрушению конструкции, так как неустойчивая форма равновесия неминуемо будет утрачена, что связано с практически неограниченным ростом деформаций и напряжений.  [c.502]

Поскольку при внецентренном ударе кроме деформаций и напряжений растяжения (сжатия) возникают еще деформации и напряжения изгиба, примем гипотезу о том, что изогнутая ось стержня при ударе совпадает по форме с изогнутой осью при статическом действии нагрузки.  [c.292]

Вопрос о деформациях и напряжениях, возникающих в месте контакта, решается методами теории упругости. При решении задачи задаются следуюш,ими предположениями 1) материалы соприкасающихся тел однородны, изотропны, а нагрузки создают в зоне контакта только упругие деформации 2) площадка контакта мала по сравнению с поверхностями тел 3) действующие усилия направлены по нормали к поверхности соприкасающихся тел.  [c.150]

Деформируемое тело, полностью восстанавливающее свои размеры и форму после снятия нагрузки, называется упругим. Для изотропного однородного упругого тела при малых деформациях и напряжениях, не превышающих некоторых определенных значений, принимаем линейные зависимости между компонентами деформации и компонентами напряжения. Эти линейные зависимости выражают собой закон Гука  [c.180]

Перемещения, деформации и напряжения в пластине. Рассмотрим прямоугольную пластину (рис. 9.2), которая изгибается под действием поперечной распределенной нагрузки q и сил, действующими в срединной поверхности.  [c.186]

Частным случаем динамической нагрузки является ударная нагрузка, которая наиболее опасна для прочности конструкции. Рассмотрим, как определяются деформации и напряжения при растягивающем ударе.  [c.224]

На рис. 3.98, г показана схема нагружения вала в плоскости хг, а на рис. 3.98, д — эпюра изгибающих моментов (моменты имеют двойной индекс у2 или уЕ, что означает момент относительно оси у в сечении 2 под червячным колесом или момент относительно оси у в сечении Е под правым подшипником. Нагрузка вала от натяжения цепной передачи 5ц определяется по формуле (3.117). Если направление силы 5ц не задано (это может быть также сила натяжения ветвей ременной передачи), ее следует направлять так, чтобы она увеличивала деформации и напряжения от окружного усилия, действующего в зубчатой или червячной передаче, в данном случае от силы Р (см. рис. 3.98, г).  [c.415]


Тензодатчики. Измерение деформаций и напряжений на вращающихся объектах осуществляется с помощью тензодатчиков, которые представляют собой тензочувствительные преобразователи (тензорезисторы). Для измерения на вращающихся объектах можно применять проволочные, фольговые и полупроводниковые тензодатчики, но фольговые датчики имеют преимущества они допускают значительно большую токовую нагрузку, чем проволочные, из-за большей поверхности охлаждения и позволяют обеспечить более жесткую связь с деформируемой поверхностью. Используемая для датчиков фольга имеет толщину от 1 до 10 мм.  [c.314]

Контактные деформации и напряжения возникают в зоне соприкосновения двух тел, ограниченных криволинейными поверхностями, в результате действия сил, прижимающих эти тела друг к другу. При отсутствии нагрузки тела соприкасаются в точке (начальный точечный контакт) или по линии (начальный линейный контакт). Оба случая контакта должны быть проиллюстрированы техническими примерами.  [c.186]

Гипотеза о линейной зависимости между деформациями и напряжениями. Предполагается, что при деформировании большинства материалов справедлив закон Гука, вызывающий прямую пропорциональность между деформациями и нагрузками. При растяжении или сжатии стержня закон Гука записывается в виде  [c.18]

На прочность пластичных и хрупких материалов концентрация напряжений влияет по-разному. Существенное значение при этом имеет также характер нагрузки. Если материал пластичный (диаграмма напряжений имеет площадку текучести зна чительной протяженности) и нагрузка статическая, то при увеличении последней рост наибольших местных напряжений приостанавливается, как только они достигнут предела текучести. В остальной части поперечного сечения напряжения будут еще возрастать до величины предела текучести Стт, при этом зона пластичности у концентратора будет увеличиваться (рис. 120). Таким образом, пластичность способствует выравниванию напряжений. На этом основании принято считать, что при статической нагрузке пластичные материалы мало чувствительны к концентрации напряжений. Эффективный коэффициент концентрации для таких материалов близок к единице. При ударных и повторно-переменных нагрузках, когда деформации и напряжения быстро изменяются во времени, выравнивание напряжений произойти не успевает и вредное влияние концентрации напряжений сохраняется. Поэтому в расчетах на прочность учитывать концентрацию напряжений необходимо.  [c.120]

Можно утверждать, что достижение нагрузками критических значений равносильно разрушению конструкции, так как неустойчивая форма равновесия неминуемо будет утрачена, что связано с практически неограниченным ростом деформаций и напряжений. Особая опасность разрушения вследствие потери устойчивости заключается в том, что обычно она происходит внезапно и при низких значениях напряжений, когда прочность элемента еще далеко не исчерпана.  [c.561]

Следует отметить, что во всех случаях, когда может использоваться принцип суперпозиции, деформации и напряжения, вызываемые внешними силами, не зависят от начальных напряжений н могут определяться в точности таким же путем , как это делается при отсутствии начальных напряжений. В таких случаях полные напряжения находятся в результате суперпозиции напряжений, вызванных внешними силами, на начальные напряжения. В случаях, когда принцип суперпозиции неприменим, напряжения, вызываемые внешними силами, нельзя определить, не зная начальных напряжений. Мы не можем, например, найти напряжения изгиба, вызываемые поперечными нагрузками в тонком стержне, если этот стержень имеет начальное растяжение или сжатие, не зная величины начальных напряжений.  [c.281]

В оценке этих нагрузок существуют два подхода. С одной стороны, нагрузка считается быстро изменяющейся, если она вызывает заметные скорости деформации частиц тела, причем настолько большие, что суммарная кинетическая энергия движущихся масс составляет уже значительную долю от общей работы внешних сил. С другой стороны, скорость изменения нагрузки может быть связана со скоростью протекания пластических деформаций. Нагрузку может рассматривать как быстро изменяющуюся, если за время нагружения тела пластические деформации не успевают полностью реализоваться. Это заметно сказывается на характере наблюдаемых зависимостей между деформациями и напряжениями.  [c.97]


Круговой тонкостенный цилиндр радиусом R и постоянной толщиной Л находится под действием некоторой осесимметричной нагрузки (рис. 10.29). Деформации и напряжения, возникающие в оболочке, также обладают, очевидно, осевой симметрией, и деформированный цилиндр представляет собой некоторое тело вращения. Форма этого тела определяется формой изогнутой образующей цилиндра.  [c.423]

Отметим, что уравнение состояния (7.4) предусматривает упругомгновенную реакцию при мгновенном приложении внешней нагрузки. Поэтому при приложении внутреннего давления в момент = о к цилиндру а г бц происходит его упругомгновенное деформирование. В силу однородности цилиндра а г Ьц, поле перемещений, деформаций и напряжений в нем в момент = о в линейном случае (при т = 1) должно совпадать с известным решением теории упругости для -цилиндра, находящегося под внутренним давлением Рд. Действительно, полагая = о в (7.28), (7.29), получим  [c.120]

Пусть имеется бесконечная плоскость с круговым отверстием радиуса о- В некоторый момент, который принят за начало отсчета времени, к плоскости прикладывается на бесконечности равномерно распределенная радиальная нагрузка до, которая для определенности считается растягивающей. Эта нагрузка изменяется в дальнейшем по закону д (1), д (0) = до. При этом внутри полости действует давление Р ( ), Р (0) = Ро, и радиус полости растет по закону а ), а (0) = ао- Обозначим символом р (г) возраст слоя,радиуса г в момент начала отсчета времени. Радиальное перемещение t, г) и компоненты деформации и напряжения в рассматриваемой плоскости с круговым отверстием должны удовлетворять следующим уравнениям уравнение равновесия  [c.123]

Метод лаковых покрытий дает возможность выявить чисто качественную картину распределения деформаций и напряжений на поверхности испытываемой детали и определить на ней наиболее нагруженные зоны. Сущность этого метода заключается в том, что поверхность детали или ее модели перед испытанием покрывается тонким слоем (0,07-ьО,15 мм) специального лака (например, канифольно-целлулоидного), пленка которого в застывшем состоянии обладает достаточной хрупкостью. При нагружении лак деформируется вместе с деталью и, благодаря его хрупкости, дает трещины по площадкам, по которым действуют наибольшие нормальные напряжения. По мере роста нагрузки трещины распространяются по всей поверхности.  [c.7]

Даже для простых структур желательно иметь вычислительные алгоритмы. Определение деформаций и напряжений и их преобразование к главным осям слоя осуществляется, как и ранее, по стандартной схеме. Ввиду того, что деформации распределяются по толщине неравномерно, построение предельной поверхности в общем случае невозможно. Послойный анализ целостности слоев, согласно расчету по максимально допустимым или предельным нагрузкам, проводится так же, как и ранее. Вычисления, связанные с последовательным анализом нарушения сплошности слоев до разрушения материала, непригодны для ручного счета. Более подробный численный анализ можно найти в работе [2], а также в руководстве [1] (раздел 2.1).  [c.98]

Для проведения испытаний с целью изучения закономерностей неизотермической малоцикловой прочности, а также неизотермического деформирования используются установки растяжения — сжатия, снабженные системами программного регулирования. В этих установках основные решения вопросов управления режимами неизотермического нагружения, измерения процесса деформирования и нагрева, регистрации параметров соответствуют использованным в исследованиях сопротивления деформированию и разрушению в условиях длительного малоциклового нагружения, а также в описанной выше крутильной установке. Применены системы слежения с обратными связями по нагрузкам (деформациям) и температурам, отличающиеся непрерывным измерением и регистрацией основных характеристик процесса (напряжение, деформация, температура) в форме диаграмм циклического деформирования, развертки изменения параметров во времени, а также кривых ползучести и релаксации при однократном и циклическом нагружении.  [c.253]

Рис. 6. Влияние растягивающей перегрузки на процесс локальных деформаций и напряжений (цифры соответствуют номерам пиков нагрузки). Рис. 6. Влияние растягивающей перегрузки на процесс локальных деформаций и напряжений (цифры соответствуют номерам пиков нагрузки).
Поскольку эпюра нормальных напряжений в конце нагружения была нелинейной, а при разгрузке —линейной, после снятия нагрузки в балке имеют место остаточные деформации и напряжения, эпюра которых равна разности эпюр нагружения и разгрузки.  [c.264]

Исследование полей деформаций и напряжений. При оценке прочности элементов конструкций при длительном малоцикловом и неизотермическом нагружении необходимо определять поля деформаций и напряжений с учетом работы материала в опасных зонах за пределами упругости в условиях повторного нагружения и проявления температурно-временных эффектов. Исходными расчетными параметрами являются нагрузка, перемещение и температура.  [c.18]

Рассмотрим методы анализа полей циклических упругопластических деформаций и напряжений и расчета долговечности элементов конструкций при длительном изотермическом и неизотермическом малоцикловом нагружении, когда основным фактором, влияющим на НДС и усталостное повреждение деталей является механическая нагрузка.  [c.133]


ОДНОЙ оптической постоянной. Для материалов, которые ползут под нагрузкой, деформации определяются напряжениями не единственным образом, так что при установлении связи оптических эффектов с напряжениями необходимо рассматривать как напряжения, так и деформации. Кокер и Файлон [9] высказали предположение, что для таких материалов двойное лучепреломление представляется в виде линейной функции напряжений и деформаций и что для обработки картин полос необходимы две оптические постоянные — по напряжениям и по деформациям.  [c.140]

Если Л = 0, т. е. имеет место внезапное приложение нагрузки, то из формул (XI.1) и (XI.2) получим А1,1 = 2Аиг, аа = 2ае(-При внезапном приложении нагрузки деформации и напряжения вдвое больше, чем при статическом действии той же нагрузки.  [c.291]

При внезапном приложении нагрузки деформации и напряжения вдво больше, чем при статическом действии той же нагрузки.  [c.256]

Стыковые соединения элементов плоских и пространственных заготовок наиболее распространены. Соединения имеют высокую прочность при статических и динамических нагрузках. Их выполняют практически всеми видами термической и многими видами термомеханической сварки. Некоторая сложность применения сварки с повышенной тепловой мощностью (автоматической под флюсом, пла ,менной струей) связана с формированием корня шва. В этом случае для устранения сквоз юго прожога при конструировании соединений необходимо предусматривать съемные и остающиеся подкладки. Другой путь — применение двусторонней сварки, однако при этом необходимы кантовка заготовки и свободны подход К корневой части сварного соединения. При сварке элементов различных толщин кромку более толстого элемента выполняют со скосом для уравнива1П1Я толщин, что обеспечивает одинаковый нагрев кромок н исключает прожоги в более тонком элементе. Кроме того, такая форма соед шения работоспособнее вследствие равномерного распределения деформаций и напряжений.  [c.247]

Этот метод исследования напряжений (разделы метода фотоупругость, фотопластичность, фотовязкость, динамическая фотоупругость и др.) позволяет определять поля деформаций и напряжений при действии известным образом расположенных нагрузок. Модели выполняют подобными по форме и нагрузке исследуемой детали или конструкции и просвечиваются в полярископе. Разности главных напряжений и их направления в плоскости наблюдения определяют измерением порядка полос интерференции или по точкам при просвечивании плоской модели или среза замороженной объемной модели. По напряжениям в модели, используя формулы по-  [c.337]

В условиях технологической обработки и фрикционного взаимодействия поверхностные слои детали подвергаются упругим и пластическим деформациям. При упругом деформировании под действием внешней силы изменяется расстояние между атомами в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы возвраьцаются в исходное равновесное положение, деформация и напряжения исчезают.  [c.48]

Эта теория позволяет в телах различной формы рассчитать по за данным внешним нагрузкам поля деформаций и напряжений, когда в теле содержатся исходные разрывы, которые могут распространяться в виде трещин. Эти расчеты позволяют указать для выбранной системы нагрузок их критическую величину, определяющую начало роста трещин. Кроме этого, можно производить расчет процесса расширения трепщн по заданным внешним условиям и, в частности, решать вопросы об устойчивости критических состояний. Иллюстрации некоторых приложений даны в нижеследующих примерах.  [c.539]

Метод касательного модуля (Маркал и Тёрнер [23]) позволяет использовать процедуры, созданные ранее для решения задач линейной упругости. Вместо обобщенного закона Гука (8) применяются определяющие уравнения (22) упругопластической среды при этом полная история нагружения получается как сумма отдельных линейных (но не упругих) решений. Величины Sij, То и тИт, входящие в уравнение (22), вычисляются в начале каждого шага нагружения, а затем считаются постоянными, что приводит к линейному соотношению между переменными гц и dij — полными скоростями изменения деформаций и напряжений — в каждой точке внутри материала. Таким образом, на каждом шаге приращения нагрузки решение может быть получено сразу, без привлечения итерационных процедур.  [c.218]

При циклическом нагрунсепии образца с трещиной в пластической зоне у конца трещины всегда реализуется высокий уровень деформаций и напряжений, соответствующих повторно-статическому и малоцикловому нагруясению. При этом в окрестности конца трещины в диапазоне значений коэффициента асимметрии цикла г = —1 -X 0,5 имеют место остаточные напряжения сжатия [32—351, т. е. у конца трещины реализуется знакопеременное напряженно-деформированное состояние, близкое к симметричному, независимо от велпчнпы г, создаваемой внешними нагрузками.  [c.244]

Сопротивление деформированию при длительном малоцикловом и неизотермическом нагружении зависит не только от числа циклов нагружения, но и от температуры и формы циклов термомеханического нагружения (длительности цикла, времени выдержки при постоянной нагрузке и т. д.). Процрсс сопровождается соответствующим увеличением или уменьшением показателей упрочнения и, следовательно, изменением деформаций и напряжений (коэффициентов К >,  [c.96]

Анализ полей деформаций и напряжений в цилиндрическом корпусе при тепловой нагрузке в период выхода на режим Ai (для нулевого полуцикла) показывает, что максимальные интенсивности упругопластических деформаций и напряжений возникают в переходной зоне (рис. 4.55). Причем действительные значения деформаций (штриховые линии) в опасном сечении достигают 0,45 % и почти в 2 раза превышают значения деформаций, полученные при упругом расчете (сплошные линии). Существенно, что характер распределения и уровень упругопластических деформаций на внутренней и внешней поверхностях примерно одинаковы. Об этом свидетельствуют также форма и размеры зон упругопластических деформаций в характерные момеигы времени нагружения на этапе нагрева.  [c.224]


Смотреть страницы где упоминается термин Нагрузки, деформации и напряжения : [c.111]    [c.562]    [c.53]    [c.164]    [c.80]    [c.157]    [c.210]   
Смотреть главы в:

Справочник техника-конструктора Изд.3  -> Нагрузки, деформации и напряжения

Справочник техника-конструктора  -> Нагрузки, деформации и напряжения



ПОИСК



114 —Напряжения при нагрузке

597 — Деформации и напряжения

Динамическое действие нагрузок Напряжения и деформации с учетом сил инерции

Исследование деформаций и напряжений в условиях динамических нагрузок

Нагрузки, допускаемые напряжения и деформации

Нагрузки, напряжения, деформации, перемещения

Напряжения и деформации в кольцевых деталях при осесимметричной нагрузке, при плоском и пространственном изгибе

Напряжения и деформации от механических нагрузок в несущих элементах ВВЭР

О допускаемых напряжениях и деформациях при динамических нагрузках

Общие понятия о нагрузках, напряжениях, деформациях и разрушении материалов

Распределение нагрузки и напряжений в деталях соединений при наличии пластических деформаций

Сварные конструкции — Деформации остаточные 67—69 — Напряжения допускаемые 49, 50 — Напряжения остаточные 66, 67 — Сопротивление ударным нагрузкам 63 — Элементы — Конструирование и расчет

Стержень вращающийся — Изгиб 95 Схема распределения деформаций в сечении функции пластичности 39, 40 — Кривые предельной нагрузки 73 — Линейное упрочнение 37, 38 — Напряжения



© 2025 Mash-xxl.info Реклама на сайте