Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные свойства теплоносителей

Основные свойства теплоносителей  [c.15]

Ниже описаны основные свойства теплоносителей, применяемых 3 ядерной энергетике.  [c.340]

Другая учебная программа предназначена для анализа локальных характеристик теплопередачи через стенку поперечно-обтекаемой трубы. Внешними варьируемыми параметрами являются числа Рейнольдса потоков внутри и снаружи трубы, степень турбулентности набегающего потока, свойства теплоносителей. Основное математическое содержание модели составляет приближенное решение интегрального уравнения  [c.203]


Множитель (Ргн(/Ргс)°- представляет собой поправку, учитывающую зависимость физических свойств теплоносителя (в основном вязкости) от температуры. В зависимости от направления  [c.84]

В процессе теплообмена около поверхности пластины формируется тепловой пограничный слой, в пределах которого температура теплоносителя изменяется от значения, равного температуре стенки t , до температуры потока вдали от поверхности (рис. 3-5). Характер распределения температуры в тепловом пограничном слое зависит от режима течения жидкости в динамическом пограничном слое. Сам характер формирования теплового слоя оказывается во многом сходным с характером развития динамического пограничного слоя. Так, при ламинарном пограничном слое отношение толщины динамического б , и теплового слоев зависит только от числа Прандтля, т. е. от теплофизических свойств теплоносителя. Это значит, что зависимость от скорости и расстояния X сохраняется такой же, как и для динамического слоя. При значении Рг = 1 толщины слоев оказываются равными друг другу л- При ламинарном течении перенос теплоты между слоями жидкости, движущимися вдоль поверхности, осуществляется путем теплопроводности. При турбулентном пограничном слое основное изменение температуры происходит в пределах тонкого вязкого подслоя около поверхности, через который теплота переносится также только путем теплопроводности. В турбулентном ядре пограничного слоя из-за интенсивного перемешивания жидкости изменение температуры незначительно и поле температур имеет ровный, пологий характер. Таким образом, как при ламинарном, 72  [c.72]

Множитель (РГж/РГс)° представляет собой поправку, учитывающую зависимость физических свойств теплоносителя (в основном вязкости) от температуры. В зависимости от направления теплового потока эта поправка может быть как больше, так и меньше единицы.  [c.90]

Современная техника идет по пути использования высоких плотностей тепловых потоков, при которых наблюдаются существенные изменения температуры по сечению движущейся жидкости и вдоль каналов. Изменение температуры обусловливает изменение вязкости, теплопроводности, теплоемкости, плотности и других свойств теплоносителя. Это, в свою очередь, является причиной деформации профиля массовой скорости потока жидкости по сравнению с изотермическим течением, когда основные гидродинамические характеристики поддаются описанию в обобщающих критериях.  [c.48]


Изменение свойств теплоносителя от температуры и давления, а также наличие химических реакций в потоке теплоносителей при неизотермическом течении, реакций диссоциации и рекомбинации оказывают существенное влияние на процессы теплообмена. Основными причинами такого изменения является искажение профилей массовой скорости и коэффициентов турбулентного переноса тепла. В теплоносителях, в которых возможны процессы как диссоциации, так и рекомбинации, а также при наличии других химических реакций влияние неизотермичности проявляется и в результате изменения эффективной теплоемкости потока По сечению.  [c.103]

Глава 1 ОСНОВНЫЕ СВОЙСТВА ЖИДКИХ МЕТАЛЛОВ-ТЕПЛОНОСИТЕЛЕЙ  [c.5]

Основные свойства некоторых высокотемпературных ионных теплоносителей [92]  [c.58]

Основные свойства жидких металлов, которые используются или могут быть использованы в дальнейшем как теплоносители, приведены в табл. 8.3.  [c.205]

Корпусы теплообменных аппаратов и конденсаторов большей частью выполняют сварными из стальных листов. Трубные доски тоже изготовляют стальными, а для морской воды латунными, или стальными с защитными покрытиями. Водяные камеры и крышки в зависимости от давления воды и ее свойств, наличия перегородок и их количества изготовляют сварными из стальных листов или отливают из чугуна или стали для морской воды применяют чугун, а также сталь с защитными покрытиями (асфальтовый лак, сурик или несколько слоев жидкого раствора портланд-цемента). Для трубок применяют стали, в том числе нержавеющие, различные сплавы меди с цинком (латуни) и никелем, зачастую с небольшими добавками других металлов. Медные трубки из-за недостаточной механической прочности почти не применяются. Учитывая высокую цену, дефицитность и большой расход цветных металлов на трубки теплообменной аппаратуры, в настоящее время ведутся работы по созданию полноценных заменителей цветных металлов, но эта задача пока еще не решена. При температурах металла выше 250°, как например, в воздухоподогревателях газотурбинных установок и при расчетных давлениях воды 120—180 ama в подогревателях высокого давления применяются исключительно стальные трубки. В остальных теплообменных аппаратах выбор материала трубок обусловливается в основном коррозийными свойствами теплоносителей. Основным преимуществом латунных трубок по сравнению со стальными является их значительно большая коррозийная устойчивость, особенно если вода имеет кислотную реакцию или содержит газы. Поэтому в конденсаторах, маслоохладителях, теплофикационных водоподогревателях, работающих с циркуляционной или сетевой водой, а также в регенеративных подогревателях, работающих под вакуумом (возможен засос воздуха), применяют трубки исключительно из цветных металлов. В остальных регенеративных подогревателях применяют как латунные, так и стальные трубки.  [c.43]

Основными физическими свойствами теплоносителей являются коэффициент теплопроводности удельная теплоемкость с, плотность р, коэффициент температуропроводности а = Я/рс и коэффициент вязкости ц. Для каждого вещества эти параметры имеют определенные значения и, как правило, являются функциями температуры, а некоторые из них и давления. Это очень осложняет изучение конвективной теплоотдачи.  [c.152]

Нестационарное изменение профиля температур через изменение теплофизических свойств (р, Ср, к, ц) около стенки (у+ 70), где сосредоточено основное порождение турбулентности [100], может существенно влиять на интенсивность и распределение турбулентности. Поэтому следует также ожидать различных зависимостей числа Ыи и от изменения физических свойств теплоносителя в стационарных и нестационарных условиях.  [c.23]

Известно, что ни вода, ни органические соединения не могут быть использованы в качестве теплоносителей для наиболее перспективных направлений большой энергетики. Важным новым негорючим теплоносителем для этих целей является жидкая четырехокись азота. Ее практическое использование ставит целый ряд новых химических и технологических проблем, связанных с обеспечением антикоррозионных свойств теплоносителя, предотвращением переноса продуктов коррозии по энергетическому контуру и т. д. Эти проблемы в настоящее время в основном решены, однако относящиеся сюда сведения еще не обобщались в справочной литературе с должной полнотой. Этой задаче посвящены две первые главы книги.  [c.3]


ФТОРУГЛЕРОДНЫЕ ТЕПЛОНОСИТЕЛИ И ХЛАДАГЕНТЫ. НОМЕНКЛАТУРА И ОСНОВНЫЕ СВОЙСТВА  [c.117]

ТАБЛИЦА 21.1. ОСНОВНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА ТЕПЛОНОСИТЕЛЕЙ  [c.183]

Изучению гидромеханических и теплообменных свойств нового класса носителей — проточных дисперсных систем — посвящено основное содержание предыдущих глав. Рассматриваемые в заключительных главах теплообменники с промежуточным потоком дисперсного теплоносителя составляют особый класс теплообменных аппаратов, который можно разбить на группы. Прежде всего будем их различать по принципу действия  [c.358]

В первом типе реакторов дисперсный поток несет частицы диспергированного ядерного топлива, совмещая при проходе через активную зону свойства системы теплоотвода и системы горючего. Последнее свойство в связи с потерей критичности исчезает при движении через парогенератор. Здесь дисперсный поток выступает в основном лишь как теплоноситель, если не иметь в виду появление запаздывающих нейтронов и значительную его радиоактивность. Отрицательным также является абразивное действие твердых частиц. В качестве последних можно использовать частицы металлического легированного урана, UO2, U , материалов для воспроизводства ядерного топлива (естественный уран, торий). В качестве несущей среды возможно применение как жидкости, так и газов.  [c.390]

В настоящее время разработаны и успешно применяются численные методы-решения многих теплофизических задач расчет температурного состояния-твердых тел, температурных полей в потоках жидкости и газа, в жидких и газовых прослойках, заключенных в неподвижные или вращающиеся полости исследование закономерностей движения теплоносителя с целью выявления механизма процессов теплообмена исследование структуры пограничного слоя, теплообмена и трения на твердой поверхности и т. п. Одним из наиболее успешно развивающихся направлений использования математического эксперимента в теплофизических исследованиях является изучение закономерностей тепломассообмена и трения в потоках жидкости и газа с использованием теории пограничного слоя. Поэтому в качестве примера рассмотрим более подробно основные этапы математического эксперимента по исследованию сопротивления трения и теплоотдачи турбулентного потока к твердой поверхности. Ограничим задачу случаем стационарного течения несжимаемой жидкости с постоянными теплофизическими свойствами около гладкой плоской поверхности (в общем случае проницаемой).  [c.66]

В паровых кожухотрубных теплообменниках теплоносителем слух<ит острый пар, который подается под давлением 10 Па с температурой +180° С. Отдав тепло, пар конденсируется на поверхности трубного пучка, а конденсат стекает по трубкам в нижнюю часть аппарата и выводится наружу. Наиболее интенсивно разрушается поверхность трубок, которая обращена к подаваемому внутрь теплообменника пару. Характер коррозии язвенный, что и предопределяет быстрый выход трубок из строя за 1—2 года. Основная причина выхода из строя пароподогревателей заключается в агрессивных свойствах пара, а точнее сконденсировавшейся из него воды. Агрессивность пара обусловлена недостаточной химической подготовкой жесткой воды, из которой его получают.  [c.168]

Перечень основных экспериментальных исследований теплофизических свойств органических и кремнийорганических теплоносителей  [c.87]

В табл. 3-112, 3-113 приведены данные, характеризующие химический состав облученных органических теплоносителей. Для каждого из веществ, перечисленных в этих таблицах, определялись теплофизические свойства в интервале температур 150—400 °С при различных концентрациях ВК продуктов [Л. 17, 77, 79]. Сводка значений относительных плотностей облученных теплоносителей представлена в табл. 3-114. Как видно из этой таблицы, расхождения в значениях относительной плотности по данным разных авторов не превышают максимально возможной ошибки эксперимента. Необходимо напомнить, что при исследовании плотности облученных веществ основным источником погрешности является ошибка отнесения по концентрации. Вследствие погрешности измерения массовой концентрации ВК продуктов (см. 3-2) величина ошибки отнесения может достигать 4%. Поэтому расхождения в значениях относительной плотности в 1—2% являются обычными.  [c.237]

На АЭС для подавляющего большинства контуров применяется арматура, изготовляемая из углеродистых, легированных или коррозионно-стойких сталей. По сравнению с другими материалами сталь имеет ряд преимуществ, так как обладает высокой прочностью, достаточной технологичностью. Легированием стали можно добиться получения особых свойств, таких, как теплостойкость, коррозионная стойкость, а термической п химико-термической обработкой можно регулировать прочность, твердость, износостойкость. Основными требованиями, предъявляемыми к деталям арматуры, являются прочность и долговечность, поэтому другие материалы, хотя и более дешевые, но менее надежные, чем стали, на АЭС, как правило, не применяются. Обычно материал корпусных деталей арматуры соответствует материалу трубопровода, на котором она устанавливается, поскольку основные требования к материалу трубопровода и корпусных деталей арматуры совпадают. Однако могут быть и исключения, например, для арматуры вспомогательных трубопроводов. Арматура, предназначенная для радиоактивных теплоносителей, изготовляется из сталей, коррозионно-стойких в промывочных и дезактивирующих растворах.  [c.20]

Сальник в трубопроводной арматуре препятствует проходу рабочей среды в атмосферу через зазор в подвижном соединении шпинделя с крышкой. Во многих случаях неудовлетворительная работа арматуры связана с плохим техническим состоянием сальника, поэтому материал набивки сальника должен выбираться обоснованно. Материал должен обладать следующими свойствами иметь высокие упругость, физическую стойкость при рабочей температуре, химическую стойкость против действия рабочей среды, износостойкость и возможно малый коэффициент трения. В качестве набивочных материалов в отечественной арматуре для АЭС в основном применяются асбест с графитом, асбест с фторопластом, фторопласт и некоторые другие материалы. Наиболее часто используются асбестовый плетеный шнур квадратного или круглого сечения. Целесообразно применение набивки из заранее приготовленных и отформованных колец. В арматуре первого (реакторного) контура с жидкометаллическим теплоносителем применение набивок, содержащих графит, недопустимо, так как последний, попадая в жидкий натрий, вызывает при высокой температуре науглероживание металла оборудования контура, способствуя его охрупчиванию.  [c.35]


Уравнения переноса массы и тепла при ламинарном и турбулентном течениях однофазных или двухфазных теплоносителей в каналах выводятся из основных законов физики сохранения массы, сохранения энергии, вязкого трения Ньютона, теплопроводности Фурье. Здесь и далее не будут затрагиваться вопросы переноса в жидкостях, законы трения в которых не подчиняются закону Ньютона (т = (Г ди ду). Уравнения неразрывности, движения и переноса тепла с учетом зависимости свойств от параметров теплоносителя образуют систему, представляющую основу для расчета полей скорости и температуры. Эта система является замкнутой для ламинарного режима течения. Для турбулентных режимов течения приходится прибегать к гипотезам или построению полуэмпирических моделей, позволяющих замкнуть систему уравнений. Для течений двухфазного потока, особенно в условиях кипения или конденсации, эмпирический подход до настоящего времени преобладает.  [c.9]

Наряду с рассмотрением результатов экспериментальных работ по теплообмену в книге приведены некоторые данные по основным особенностям теплофизических свойств четырехокиси, коррозионной стойкости материалов, расчету параметров потока с учетом кинетики химических реакций, влиянию особенностей физикохимических свойств четырехокиси на процессы тепло-массопереноса и гидродинамические характеристики и другие сведения, которые полезны при проведении расчетов и организации экспериментов с данным теплоносителем.  [c.6]

Вследствие своей низкой стоимости вода сейчас широко используется как эффективная теплопередающая среда, замедлитель и защита в реакторах различного типа. Наряду с этими полезными функциями имеют место и другие процессы. В первичных процессах передачи тепла от источника к потребителю вода переносит твердые вещества и газы от реактора к другим частям системы. Основной процесс замедления нейтронов сопровождается захватом нейтронов и протонов, в результате чего образуются нежелательные радиоактивные примеси. Использование воды для поглощения энергии излучения связано с реакциями диссоциации. Наконец, вода химически реагирует практически со всеми материалами, которые могут быть использованы в реакторах. Систематическое рассмотрение этих процессов, свойств воды и других реакторных материалов, их применение для проектируемых водяных реакторов и находящихся в эксплуатации составляют основу современной технологии водного теплоносителя реактора.  [c.7]

При выполнении тепловых расчетов теплоэнергетических установок необходимо многократно рассчитывать теплофизические свойства теплоносителей и рабочих веществ в широких диапазонах температур и давлений. Во многих случаях время теплового расчета на ЭВМ в основном определяется скоростью расчета теплофизических свойств веществ и компактностью модели этих свойств. Поэтому серьезное внимание уделяется созданию методов ускоренного счета тенлофизическпх свойств наряду с компактностью их иредставления в памяти ЭВМ. Применяемые в тепловых расчетах диапазоны таблиц ряда веществ могут включать десятки тысяч значений физических параметров. Ручные методы, связанные с использованием диаграмм, при расчете на ЭВМ непригодны.  [c.11]

Физико-химические свойства отложений и примесей теплоно- сителя. Прежде чем приступить к рассмотрению особенностей воз-никновепия кризиса в пористом слое, рассмотрим основные свойства отложений и примесей теплоносителя, из которых они образуются. Анализ многочисленных литературных данных показывает, что значительную долю примесей теплоносителя на АЭС составляют продукты коррозии конструкционных материалов. С совершенствованием схем водопод-тотовки и конструкций конденсаторов все меньше в контур вводится примесей с добавочной водой и присосами охлаждаюш ей воды. В то же время продукты коррозии конструктивных материалов непрерывно поступают в рабочее тело. Однако их химический состав и количество в значительной мере определяются величиной поверхностей, контактирующих с теплоносителем, свойствами материалов, условиями рабочего процесса.  [c.138]

Данные экспериментов обрабатывались на ЭВМ. Опытами охвачен сле-дутащий диапазон параметров R.e = 2.10 - 2.10 Рт. = 6+10 время возмущения тепловыделением Т = 0,02 с и выше. Опыты проводились в условиях максимального приближения к теоретической постановке задачи, в частности, в условиях практического постоянства физических свойств теплоносителя (1 ( / ) l,02). Предельные стационарные значения Nu хорошо коррелируют с формулой Петухова Б.С. Среднеквадратичная ошибка определения нестационарных значений числа Nu оценена в 7%. Основное внимание было уделено сопоставлении экспер -ментальных данных с расчетно-теоретическими, подсчитанными по (13),  [c.152]

Энергонапряженность и удельная загрузка топлива. Предельно допустимая энергонапряженность ядерного топлива в энерге-тических реакторах на единицу массы урана начального обогащения в основном определяется тремя факторами концентрацией делящихся нуклидов в топливе, т. е. значением выбранного начального обогащения принятой топливной композицией и конструкцией твэла организацией теплосъема, обеспечивающего отвод тепла теплоносителем от самых энергонапряженных твэлов и ТВС. Предельные условия теплосъема зависят от степени дисперсности и равномерности распределения делящихся нуклидов в сердечнике твэлов, теплопроводности топливной композиции и материала оболочек, от физических свойств теплоносителя, выбранных режимов и параметров охлаждения твэлов.  [c.106]

Следует отметить, что каждое из уравнений состоит из двух множителей. Один из них содержит скорость выделения тепла, длину труб, объем внутри реактора, занятый системой теплопередачи, и две разности температзф. Следовательно, значение этого множителя определяется конструкцией и условиями работы реактора и может быть изменено соответствующим подбором конструк-тивБых и режимных параметров. Второй множитель в обоих случаях содержит только физические свойства теплоносителя и поэтому зависит, в основном, от природы теплоносителя, хотя в меньшей мере он является также функцие , и от условий работы, так как физические свойства могут зависеть от температуры и давления.  [c.129]

Основным недостатком натрия является его химическая активность при взаимодействии с водой и воздухом. Лишенный этого недостатка свинец имеет свои проблемы большую коррозионную активность по отношению к конструкционным материалам, высокую температуру плавления и большую плотность. Эти свойства теплоносителя неизбежно усложняют условия эксплуатации, снижают надежность установки и, следовательно, проявляются в ухудшении безопасности и экономических характеристик как при создании, так и при эксплуатации промышленных установок. Сегодняшнее сравнение реакторов на основе натриевого и свинцового теплоносителей имеет условный характер из-за несопоставимости уровня освоенности технологии. Сопоставление всех достоинств и недостатков может быть сделано лишь на базе крупного промышленного эксперимента.  [c.358]

Несмотря на большое разнообразие теплообменных устройств с пористыми элементами по назначению, конструктивному оформлению, свойствам и фазовому состоянию геплоносителя,общим дпя них является теплообмен между пористым материалом и теплоносителем, а основное отличие заключается в условиях подвода теплоты внутрь проницаемой структуры. По способу подвода теплоты все ПТЭ форсированного режима работы можно разделить на следующие основные типы (рис. 1.1... J.4)  [c.6]


В спраиочнике приводятся данные по коррозии материалов в основных средах химических производств и нефтеперерабатывающих заводов, а также в воде н некоторых теплоносителях. От )ажено влияние агрессивных сред на механические свойства металлических и неметаллических материалов. Приведены краткие технологические характеристики, сведения о составе н области применения более 1000 марок материалов.  [c.2]

Основные продукты пиролиза соединений класса полифенилов— газы и ВК продукты. Главным процессом, определяющим предельно допустимую температуру применения исходного вещества, является образование ВК продуктов пиролиза. Накопление в теплоносителе ВК продуктов пиролиза при определенных температурах может приводить к образованию нерастворимых соединений, выпадающих на теплоиередающих поверхностях. Растворимые жидкие продукты пиролиза изменяют физико-химические свойства исходного теплоносителя. Образование газообразных продуктов требует специальных мероприятий, обеспечивающих вывод их из контура.  [c.30]

Технология воды, однако, не ограничена описанием нежелательных свойств воды. Она также включает использование ее свойств, чтобы достигнуть улучшения в конструкциях реакторов и повышения их эффективности, например использование растворов химических поглотителей нейтронов и смесей легкой и тяжелой воды для регулирования реактивности в энергетических реакторах с водой под давлением использование воды как газа или суперкритической жидкости в высокотемпературных реакторах. Основные принципы технологии водного теплоносителя применимы ко всем типам водяных реакторов промышленным, для испытаний и исследований, военным (военно-морским) и электростанциям. Каждой из этих областей применения свой-  [c.7]


Смотреть страницы где упоминается термин Основные свойства теплоносителей : [c.5]    [c.39]    [c.259]    [c.306]    [c.468]    [c.332]    [c.370]    [c.263]    [c.87]    [c.6]   
Смотреть главы в:

Коррозия конструкционных материалов ядерных и тепловых энергетических установок  -> Основные свойства теплоносителей



ПОИСК



Мер основные свойства

ОСНОВНЫЕ СВОЙСТВА ЖИДКИХ МЕТАЛЛОВ-ТЕПЛОНОСИТЕЛЕЙ

Основные физические свойства некоторых жидких металлов-теплоносителей

Свойства теплоносителей

Теплоноситель

Фторуглеродные теплоносители и хладагенты. Номенклатура и основные свойства



© 2025 Mash-xxl.info Реклама на сайте