Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия излучения связи

Вследствие своей низкой стоимости вода сейчас широко используется как эффективная теплопередающая среда, замедлитель и защита в реакторах различного типа. Наряду с этими полезными функциями имеют место и другие процессы. В первичных процессах передачи тепла от источника к потребителю вода переносит твердые вещества и газы от реактора к другим частям системы. Основной процесс замедления нейтронов сопровождается захватом нейтронов и протонов, в результате чего образуются нежелательные радиоактивные примеси. Использование воды для поглощения энергии излучения связано с реакциями диссоциации. Наконец, вода химически реагирует практически со всеми материалами, которые могут быть использованы в реакторах. Систематическое рассмотрение этих процессов, свойств воды и других реакторных материалов, их применение для проектируемых водяных реакторов и находящихся в эксплуатации составляют основу современной технологии водного теплоносителя реактора.  [c.7]


Внутренняя энергия излучения связана с объемной плотностью соотношением  [c.84]

Перенос тепла излучением и оптическая термометрия тесно связаны, поскольку в обоих случаях необходимо иметь соотношение между термодинамической температурой и количеством и качеством тепловой энергии, излученной поверхностью. В конце 19 в. на основе только классической термодинамики и электромагнитной теории были получены два важных результата. Первый — закон Стефана (1879 г.), согласно которому плотность энергии внутри полости пропорциональна четвертой степени температуры стенок полости. Второй —закон смещения Вина (1893 г.), который устанавливал, что, когда температура черного тела увеличивается, длина волны максимума излучения Хт уменьшается, так что произведение ХтТ сохраняется постоянным. Доказательство закона Стефана основано на трактовке теплового излучения как рабочей жидкости в тепловой машине, имеющей в качестве поршня подвижное зеркало, и использовании электромагнитной теории Максвелла, чтобы показать, что действующее на поверхность давление изотропного излучения пропорционально плотности энергии. Закон Вина вытекает из рассмотрения эффекта Доплера, возникающего при движении зеркала. В обоих законах появляется постоянный коэффициент пропорциональности, относительно которого классическая термодинамика не могла дать информации.  [c.312]

Это закон Стефана — Больцмана, устанавливающий связь между полной энергией излучения в замкнутом параллелепипеде с объемом V и температурой стенок полости.  [c.314]

В соответствии с квантовой теорией носителями энергии излучения являются фотоны, представляющие собой поток частиц, взаимодействующий с веществом. Фотон характеризуется прежде всего величиной своей энергии, равной произведению hv, где /1=6,625-КФ Дж- с — постоянная Планка, а -V — частота колебаний эквивалентного электромагнитного поля, с Ч Длина волны X (м) связана с V через соотнощение  [c.12]

Оптические переходы. В основе квантовомеханических представлений лежит подтвержденная экспериментальными фактами идея о том, что атомные системы могут пребывать лишь в состояниях с дискретными значениями энергии Ei, L 2, 3,. .. Согласно Бору, излучение и поглощение атомами электромагнитных волн связано с переходами атомов с одних энергетических уровней на другие, причем энергия излучения (или поглощения) при каждом таком переходе определяется как  [c.338]


Соотношение (1.43) устанавливает связь между энергетическим и спектральным описаниями электромагнитной волны и после простых выкладок приводит к важнейшему для эксперимента соотношению между суммарной энергией излучения и энергетической спектральной плотностью  [c.64]

Объемная спектральная плотность v,г энергии излучения с частотой V связана с испускательной способностью ev,г соотношением  [c.699]

Мезоатом обладает свойствами обычного атома. В частности, при переходах л-мезонов с одной орбиты на другую испускается рентгеновское излучение. Энергия этого излучения может быть рассчитана и измерена экспериментально. В связи с малостью радиуса мезонной орбиты расчетное значение энергии испускаемого излучения сильно зависит от предположения о размерах атомного ядра, так что по экспериментальному значению энергии излучения можно определить радиус атомного ядра.  [c.54]

Потеря энергии электроном связана не только с излучением, но и с взаимодействием атомов между собой. Феноменологически потерю энергии оптическим электроном можно учесть введением силы сопротивления, пропорциональной скорости, как это делается в механике Fg=—gr, где g — коэффициент, зависящий от природы атома.  [c.91]

В теоретических расчетах вместо испускательной способности tv,т пользуются объемной спектральной плотностью щ,г энергии излучения, которая связана с Ел., т соотношением  [c.141]

Носители энергии излучения — электромагнитные волны распространяются в вакууме со скоростью света с,, = 300-10 м/с и характеризуются длиной волны X н частотой v связь этих величин можно представить в виде  [c.273]

Связь между к В . Поток энергии излучения, распространяющейся в данном направлении (р, 0) (рис. hl4), можно представить в форме (13.14), где элементарный телесный угол doj по определению равен отношению элементарной площади dA , вырезанной элементарным телесным углом на сфере, к квадрату радиуса R этой сферы примем R = , тогда  [c.279]

Отличительной особенностью теплового излучения является то, что все тела постоянно испускают энергию излучения. В процессе испускания внутренняя энергия излучающего тела превращается в энергию электромагнитных волн, которые характеризуются длиной волны X и частотой V. Распределение энергии по длинам волн и частотам в спектре излучающего тела связано с температурным уровнем и физической структурой тела. При температурах до 1500 °С основная часть энергии соответствует инфракрасному излучению (Я = 0,8...800 мкм).  [c.229]

При поглощении или испускании электромагнитных волн газом изменение энергетического уровня молекулы может осуществляться различными путями. Одним из них является изменение электронного, колебательного или вращательного состояний молекулы. При этом энергетические переходы у одноатомных газов обусловлены изменением только электронных состояний и сопровождаются высокочастотным излучением. Как показывает опыт, симметричные молекулы двух атомных газов О2, N2, Н2 не могут заметно поглощать и испускать энергию путем изменения колебательно-вращательных состояний. Практически одно-и двухатомные газы при низких и умеренных температурах не излучают и не поглощают энергию и в этих условиях могут считаться прозрачными (О = 0). Однако при температуре, превышающей 5000 — 8000 К, эти газы начинают заметно излучать и поглощать энергию. Это связано с возможностью электронных переходов при высоких температурах, явлением ионизации, а также образованием несимметричных молекул вследствие диссоциации. Например, диссоциация симметричных молекул О2 и N2 приводит к образованию несимметричных молекул.  [c.130]

Закон Кирхгофа устанавливает количественную связь между энергиями излучения и поглощения ДЛЯ серых и абсолютно черного тел.  [c.106]

Закон Кирхгофа (1882 г.) устанавливает количественную связь между энергиями излучения и поглощения поверхностями серых и абсолютно черны Х тел. Этот закон можно получить из баланса лучистой-энергии для излучающей системы, состоящей из относительно большого замкнутого объема с теплоизолированными стенками и помещенных в него тел. Для каждого из этих тел в условиях термодинамического-равновесия энергия излучения равна поглощенной энергии  [c.374]


Эластомерами и пластиками являются главным образом органические материалы, состоящие из атомов углерода и водорода, связанных ковалентными связями, которые легко разрушаются при поглощении энергии излучения. В этом отношении они отличаются от металлов и керамических материалов, которые характеризуются кристаллической структурой, обычно не содержат ковалентных связей и в меньшей степени изменяют свои свойства под действием облучения. Следовательно, радиационная стойкость эластомеров и пластиков ниже, чем у металлов и керамических материалов. Все виды излучений вызывают в полимерах химические изменения, в результате которых разрушаются имеющиеся и образуются новые связи. Поэтому большинство радиационных эффектов в этих материалах необратимо пне может быть устранено обработкой после облучения.  [c.49]

В радиационной дефектоскопии деталей ГШО используют рентгено-и гамма-излучения, представляющие собой разновидность электромагнитных колебаний с длиной волны соответственно от 6-10 до 10 м и от 10 до 4-10 м. Особые свойства этих излучений связаны с тем, что они обладают гораздо большей энергией, чем, например, видимый свет, не подвергаются воздействию магнитных и электрических полей, засвечивают фотоматериалы, вызывают люминесценцию некоторых химических соединений, ионизируют газы, нагревают облучаемое вещество, воздействуют на живые организмы.  [c.12]

Большое значение при проведении неразрушающего контроля изделий имеет правильный выбор наиболее эффективных методов. В связи с этим методы контроля дефектов (методы дефектоскопии) полимерных материалов представляют значительный интерес. При этом следует иметь в виду, что способы реализации методов контроля физико-механических характеристик материалов и методов дефектоскопии имеют принципиальное различие. Если первые методы основаны на определении физических параметров с последующей их корреляцией с механическими характеристиками материалов, то методы дефектоскопии основаны на прямом преобразовании энергии излучения, отраженной от дефекта или прошедшей через контролируемую среду. В табл. 3.1 приведены основные факторы, вызывающие образование дефектов, виды дефектов и методы их контроля, Показано, что контроль качества  [c.81]

Особый интерес представляет объемная плотность Энергии излучения, если это излучение сосредоточено в замкнутом объеме. В этом случае излучение подчиняется законам излучения абсолютно черного тела, в частности закону Стефана - Больцмана, согласно которому объемная плотность энергии излучения пропорциональна четвертой степени термодинамической температуры. Если в оболочке, в которой заключено излучение, сделать малое (по сравнению с общей поверхностью) отверстие, то это отверстие будет абсолютно черным излучателем, энергетическая светимость которого связана с объемной плотностью энергии излучения соотношением  [c.287]

Данные по радиоизотопам, применяющимся для построения приборов автоматического контроля, приведены в табл. 27. Важным свойством источников ядерных излучений является отсутствие какого-либо влияния внешних условий (давления, температуры, электрического и магнитного полей и т. д.) на активность и энергию излучения. Причиной этого является то, что радиоактивность обусловлена не процессами в электронных оболочках атома, где энергии взаимодействия имеют тот же порядок, что и энергии обычных физических явлений, а связана с явлениями, происходящими внутри атомного ядра, где энергии взаимодействия на 3—4 порядка выше.  [c.115]

Однако ряд физических процессов, связанных с излучением, не находил приемлемого объяснения с точки зрения волновой теории. В частности, это относилось к явлению фотоэффекта и распределению энергии по частотам для термодинамически равновесного излучения. Эти затруднения отпали после создания Планком в 1900 г. квантовых представлений излучения, согласно которым была установлена дискретность испускаемой электромагнитной энергии. При этом испускаемое веществом излучение представляется в виде мельчайших порций (квантов) энергии излучения. Планком была установлена связь между энергией кванта и частотой излучения. Квантовая теория позволила решить задачу о распределении энергии по частотам в случае термодинамически равновесного излучения. Полученные результаты нашли блестящее экспериментальное подтверждение.  [c.11]

Как было показано выше, сумма диагональных компонентов тензора связана со спектральной объемной плотностью энергии излучения соотношением (1-96) вида  [c.168]

Излучательная способность такой среды непосредственно связана с эмиссионными свойствами твердых частиц, их рассеивающей и поглощательной способностями. Эти радиационные характеристики частиц являются основными исходными данными при любых расчетах теплообмена излучением. С ними непосредственно связаны эмиссионные свойства пламен, запыленных потоков и других дисперсных систем, в которых важную роль в процессах переноса энергии излучения играют твердые взвешенные частицы.  [c.5]

Лучистая энергия испускается и поглощается телами не непрерывно, а отдельными дискретными порциями — квантами энергии. Частота излучения связана с положением энергетических уровней молекул или атомов соотношением Бора.  [c.7]

Учитывая, что объемная плотность энергии и связана с калорической яркостью излучения соотношением  [c.29]


При прохождении излучения через идеальную оптически однородную среду ослабление излучения связано лишь с поглощением энергии в объеме среды. Если среда является оптически неоднородной, то наряду с ослаблением вследствие поглощения всегда имеет место также и ослабление вследствие рассеяния. На практике, обычно, мы всегда имеем дело с оптически неоднородными, или мутными средами.  [c.145]

С величиной N связана плотность энергии излучения, которая является энергией излучения в единице объема. Все количественные характеристики излучения могут быть представлены как функции частоты V или длины волны К.  [c.502]

Уравнение переноса излучения (3.40) связано с системой (3.38) тем, что интенсивность собственного излучения матрицыГ(Z)] зависит от ее температуры. В настоящее время разработаны различные приближенные методы решения уравнения переноса излучения (3.40). С их использованием получены численные решения совместной задачи (3.38)- (3.40) переноса энергии излучением, конвекцией и теплопроврдностью в проницаемом покрытии. Полученные результаты позволяют оценить диапазон изменения оптических характеристик матрицы, обеспечивающих ее наибольшую эффективность в том или ином конкретном случае. Так, например, выяснено, что наилучший режим работы пористого слоя как коллектора солнечной энергии достигается в том случае, когда матрица выполнена из материала, прозрачного и нерассеивающего в солнечном спектре, но непрозрачного и рассеивающего в инфракрасном диапазоне. Для теплового экрана с транспирационным охлаждением желательно обратное.  [c.61]

Диффузия света впервые была исследована Милном в связи с задачей о прохождении света в межзвездном пространстве, получившей название задачи Милна [102, 5561. Интенсивность рассеивания одиночной сферической частицей падающего излучения, имеющего вид бесконечных плоских волн, была вычислена при помощи волнового уравнения Максвелла по методу, известному под названием теории Ми [114]. Рассеяние характеризуется совместным действием эффектов отражения, преломления, дифракции и передачи энергии излучения рассматриваемой частицей.  [c.237]

Повышение эффективности энергетических агрегатов, как правило, связано с изменением конструкции. Так, например, в котельной установке производительностью 950 т/ч ири сохранении старой конструкции потери тепла в окружающую среду составляют 0,1% к. п. д., П рисос воздуха в газовый тракт котла снижает его к. п. д. еще на 0,5 7о, за счет чего теряется около 80 000 руб. в год [178]. Эти потери могут быть значительно компенсированы увеличением доли энергии излучения в общем тепловом балансе. Повышение излучательной способности узлов находит широкое применение в установках для прямого преобразования тепловой энергии в электрическую, в котлах, турбинах, двигателях, высокотемпературных печах и в теплообменниках, электровакуумных  [c.5]

Описание процесса т е п л о в о г о излучения,, Все тела, температура которых отлична от абсолютного нуля, непрерывно излучают и поглощают лучистую. энергию. Излучение имеет двуединую корпускуляр-нонволновую природу. В связи с этим лучистый теплообмен между телами рассматривают как с позиций электромагнитной теории света, так и с позиций квантовой теории излучения.  [c.12]

V Интенсивность лазерного излучения. При увеличении мощности накачки увеличивается интенсивность лазерного излучения. Однако такое увеличение имеет предел. Это обусловлено тем, что по мере увеличения чггсла атомов в метастабпльном состоянии возрастают процессы спонтанного излучения, в результате чего, уменьшается инверсия налесснности, приводящая к уменьшению интенсивности излучения. Энергия излучения рубиновых лазеров по сравнению с газовыми больше и может достигнуть 10 Дж и более, что связано с большей концентрацией активных атомов в рубине, чем в газе. Из-за очень малой длительности излучения в рубиновых лазерах такая энергия создает мощность порядка 10 Вт/см .  [c.388]

Плотность энергии излучения р(со, Т) связана с испуска-тельной способностью абсолютно черного тела ф(ю, Т) известным соотношением (его вывод можно найти в курсах общей физики)  [c.41]

Предположим противное пусть после равновесного адиабатного расширения от плотности м, до плотности излучение перестало быть черным по спектральному составу. Так как излучение — система, которая находится в устойчивом равновесии, то, если излучение привести в соприкосновение с телом температуры Гг, с которым оно будет находиться в равновесии (т. е. общая энергия излучения не изменится), излучение с течением времени будет черным. Система без изменения полной энергии перейдет в устойчивое равновесие, что связано с ростом энтропии. Следовательно, энтропия черного излучения с плотностью 2 должна быть больще энтропии черного излучения начального состояния с плотностью Ml-  [c.359]

Радиационная пирометрия основана на измерении полной (во всем спектральном интервале) энергии излучения тел. Если энергия полного излучения нечерного тела и энергия АЧТ равны, то температура АЧТ определяет радиационную температуру 7 р нечерного тела. Радиационная температура связана с термодинамической соотношением  [c.191]

Диффузионное приближение. Дальнейшее развитие дифференциальных методов расчета процесса переноса излучения привело к. созданию диффузионного приближен ия (В. А. Фок, С. Росселанд). В рамках указанного приближения можно показать, что связь вектора лучистого потока энергии qR с полной объемной плотностью энергии излучения аналогична известному соотношению между диффузионным потоком и градиентом концентрации. Далее сформулирован метод расчета поля излучения в рамках диффузи энного приближения с учетом селективности излучения и п эо-извольной формы индикатрис рассеяния [20].  [c.168]

Облучение большинства неорганических керамических материалов сопровождается сильным эффектом фотопроводимости. Большая часть энергии излучения затрачивается на возбуждение электронов и ионизацию. Хотя это возбуждение и не приводит к разрыву старых и образованию новых связей, оно образует квазисвободные электроны, которые могут свободно перемещаться под влиянием электрического поля. Так как подвижность носителей заряда в неорганических соединениях выше, чем в органических полимерах, то и величина фототока, возникшего под действием облучения, соответственно иная.  [c.397]

Водные кипящие реакторы канального типа представляют крайний случай распределения поглощения энергии излучения. В этой конструкции теплоноситель проходит через трубы, содержащие топливо и окруженные водным замедлителем. Количество воды в замедлителе во много раз больше, чем теплоносителя в трубах, и поглощение энергии излучения соответственно пропорционально. Как и в реакторах корпусного типа, циркулирующий теплоноситель может проходить через замедлитель или поток теплоносителя может полностью отделяться от замедлителя. Хальденский кипящий водный реактор (HBWR) является примером первого класса реакторов канального типа. Помимо этих соображений о конструкции установки имеются другие факторы, которые заметно связаны с процессом радиолиза поглощенная энергия на. единицу мощности и ее распределение между нейтронами и уизлучением пнтенсивность процесса кипения давление (и температура) качество пара на выходе, которое влияет на распределение газа и кинетику реакций химические добавки, изменяющие природу и концентрацию растворенных веществ в воде.  [c.93]


Очевидно, что в режиме оттеснения безразмерные скорости разрушения Gw=Gwl(aj p)o столь высоки, что можно полностью пренебречь величиной конвективного теплового потока. При малых скоростях уноса массы вдув может, наоборот, привести к увеличению конвективного теплового потока, что связано с поглощением энергии излучения продуктами разрушения и увеличением температуры во внешней части пограничного слоя. Необходимо считаться также с тем обстоятельством, что компоненты с высокими коэффициентами поглощения, нагреваясь, сами могут начать испускать излучение. За счет смещения спектрального распределения коэффициентов поглощения при повышении температуры 295  [c.295]

Разложив далее тензор излучения 11 на две составляющие (первая из них является скаляром и линейно связана с плотностью энергии излучения, а вторая дает распределение интенсивности излучения по различным направлениям), автор проанализировал их величины. В результате оказалось, что для звездных фотосфер с большой оптической плотностью второй составляющей тензора можно пренебречь по сравнению с первой, а состояние среды и излучения в фотосфере можно считать близким к термодинамическому равновесию. Оба эти фактора позволили С. Росселанду представить вектор полного радиационного потока, исходя из (5-1), в виде диффузионной формулы  [c.143]

Оно дает связь величин Яр и при задании полных объемных плотностей спонтанного (г]с) или результирующего (т1рез) излучения. Рассматривая (5-44) или (5-51) совместно с (5-52), можно исключить из них Яр и получить одно дифференциальное уравнение относительно полной объемной плотности энергии излучения U.  [c.158]


Смотреть страницы где упоминается термин Энергия излучения связи : [c.253]    [c.18]    [c.59]    [c.221]    [c.417]    [c.19]    [c.67]    [c.76]   
Физические величины (1990) -- [ c.278 ]



ПОИСК



Энергия излучения

Энергия связи



© 2025 Mash-xxl.info Реклама на сайте