Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реактор высокотемпературный (HTR)

Конструкция реактора. Высокотемпературный ядерный реактор является ответственным и наиболее важным элементом ПГТУ с закрытой тепловой схемой. В реакторе осуществляется нагрев парогазовой смеси до 1200 К и выше.  [c.69]

Проведена модернизация реактора высокотемпературного жидкофазного хлорирования этилена для ОАО "Саянскхимпром", что повысило селективность процесса, качество продукции и дало предприятию реальный экономический эффект 1,69 млн. деноминированных рублей в год. Большая роль в получении заказов на вышеуказанные работы и их успешное выполнение принадлежит кандидату технических наук, заведующему отделом института Самсонову В.В.  [c.18]


РАЗРАБОТКА НОВОГО РЕАКТОРА ВЫСОКОТЕМПЕРАТУРНОГО ЖИДКОФАЗНОГО ХЛОРИРОВАНИЯ ЭТИЛЕНА С ПОВЫШЕННЫМИ ТЕХНИКО-ЭКОНОМИЧЕСКИМИ ПОКАЗАТЕЛЯМИ  [c.312]

Рис. 1. Опытный реактор Высокотемпературного жидкофазного хлорирования этилена со струйным вводом реагентов Рис. 1. <a href="/info/65451">Опытный реактор</a> Высокотемпературного жидкофазного хлорирования этилена со струйным вводом реагентов
Разработки реакторных термогенераторов космического назначения начались несколько раньше и достигли, как видно из таблицы, более высокой стадии, чем работы по созданию наземных установок. В процессе разработки космических термогенераторов изучались в основном два типа реакторов высокотемпературный на быстрых нейтронах без теплоносителя (СССР) и на тепловых нейтронах с жидкометаллическим теплоносителем (США).  [c.204]

Свыше 7 00 °С — детали ракетной и авиационной техники, греющиеся узлы новой теплоэнергетики, МГД-генераторов, термоядерных реакторов, высокотемпературные электронагреватели и термопары.  [c.279]

ГИДРОДИНАМИКА И ТЕПЛООБМЕН В ВЫСОКОТЕМПЕРАТУРНЫХ ЯДЕРНЫХ РЕАКТОРАХ С ШАРОВЫМИ ТВЭЛАМИ  [c.1]

ПЕРСПЕКТИВЫ РАЗВИТИЯ ЯДЕРНЫХ ЭНЕРГОУСТАНОВОК ВЫСОКОТЕМПЕРАТУРНЫМИ ГАЗООХЛАЖДАЕМЫМИ РЕАКТОРАМИ С ШАРОВЫМИ ТВЭЛАМИ  [c.3]

Практически все отмеченные преимущества реакторов ВГР подтверждены опытом почти десятилетней эксплуатации первых высокотемпературных реакторных энергоустановок и отчетливо проявляются в характеристиках прототипов промышленных реакторов ВГР для производства электроэнергии. В табл. В.1 приведены характеристики эксплуатируемых и строящихся реакторов ВГР.  [c.4]

Перспективным высокотемпературным топливом являются также нитриды урана и плутония. По сравнению с карбидным топливом они обладают еще большей плотностью делящегося вещества при сохранении высоких значений теплопроводности и температуры плавления. Однако пока проведено недостаточное количество работ по исследованию совместимости нитридного топлива и его радиационной стойкости. В табл. 1.1 приведены физические характеристики топливных материалов, которые могут использоваться в реакторах ВГР и БГР.  [c.10]

ОПТИМИЗАЦИЯ ПАРАМЕТРОВ ТЕПЛОНОСИТЕЛЯ И ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ШАРОВЫХ ТВЭЛОВ ВЫСОКОТЕМПЕРАТУРНЫХ РЕАКТОРОВ  [c.91]

ОПТИМИЗАЦИЯ ПАРАМЕТРОВ ТЕПЛОНОСИТЕЛЯ В ВЫСОКОТЕМПЕРАТУРНЫХ РЕАКТОРАХ  [c.91]


В высокотемпературных газоохлаждаемых реакторах в качестве ограничивающих факторов выступают предельно допустимая температура ядерного топлива и перепад давления, приходящийся на активную зону, который характеризует допустимые затраты энергии на прокачку теплоносителя. Таким образом, необходимо при одинаковой максимальной температуре топлива или одинаковой разности температур Д7 = A7 s+ДТ тв топлива Б шаровых твэлах и газом найти такой вариант активной зоны, который обладал бы минимальным гидродинамическим сопротивлением при заданных геометрических размерах активной зоны, тепловой мощности и параметрах газового теплоносителя.  [c.97]

Богоявленский P. Г. Гидродинамика и теплообмен в высокотемпературных реакторах с шаровыми и призматическими твэлами (обзор).— В кн. Вопросы атомной науки и техники. Серия Атомно-водородная энергетика . Вып. 2(3). М., Изд. ИАЭ им. И. В. Курчатова, 1977, с. 67.  [c.110]

Другим отличием этого издания от предыдущего является определенное развитие теоретических и прикладных вопросов. Надеемся, что введенная в рассмотрение количественная мера степени проточности дисперсных систем — критерий проточности — окажется полезной для анализа не только тех случаев, которые разобраны в данной работе. Несколько увеличен объем последних глав, посвященных теплообменникам с дисперсными теплоносителями. В частности, приведены данные о высокотемпературных теплообменниках выделен раздел, кратко освещающий особенности ядерных реакторов с дисперсными системами, и пр. Однако методика расчета теплообменников изложена лишь с принципиальных позиций как в силу ограниченности объема книги, так и в связи с довольно детальным рассмотрением тепловых и гидромеханических процессов в предыдущих главах.  [c.3]

Ряд возможностей улучшения характеристик газовых реакторов (включая высокотемпературные) за счет использования газографитовых теплоносителей можно проиллюстрировать, пользуясь известной зависимостью, справедливой для центрального наиболее напряженного канала  [c.395]

Третье поколение газоохлаждаемых реакторов — высокотемпературные газоохлаждаемые реакторы на тепловых нейтронах (ВГР, в зарубежной литературе HTGR, HTR, THTR) характеризуется использованием топлива в виде микрочастиц карбидов или окислов с покрытием пиролитическим углеродом и карбидом кремния графита в качестве замедлителя и конструкционного материала активной зоны инертного теплоносителя. Отсутствие в активной зоне материалов, значительно поглощающих нейтроны, высокая допустимая температура топлива и графита и конструкция тепловыделяющих элементов обеспечивают достижение высоких значений коэффициента воспроизводства, удельной мощности топлива и объема активной зоны, глубины выгорания и температуры теплоносителя.  [c.156]

В условиях, когда не производится замена устаревшего оборудования, отделом выбрано направление на модернизацию и повышение эффективности работы действующего оборудования. Главное подразделение отдела в этом направлении - лаборатория реакторного оборудования, имеет хорошие успехи по уже внедренным разработкам. Это реакторы высокотемпературного жидкофазного хлорирования этилена, реакторы оксихлорирования этилена в псевдосжиженном слое порошкового катализатора. На рис. 6 справа опытно-промышленный эжекционный реактор жидкофазного хлорирования этилена. На этом же рисунке слева - реактор старой конструкции. Разница в размерах и объеме при одинаковой производительности наглядно свидетельствуют о значительном повышении интенсивности технологического процесса.  [c.37]

Жидкофазное хлорирование этилена является одним из наиболее перспективных способов получения 1,2-дихлорэтана - промежуточного продукта хлорорганического синтеза. Процесс сопровождается выделением значительного количества тепла. В зависимости от способа отвода тепла -за счет испарения рабочей среды или путем ее охлаждения в теплообменнике - различают соответственно высокотемпературное и низкотемпературное жидкофазное хлорирование. Реактор жидкофазного хлорирования этилена представляет собой газлифтный барботажный аппарат, заполненный продуктом реакции. В нижней части восходящего потока растворяется газообразный хлор. Выше по потоку протекает хемосорбция этилена образовавшимся раствором хлора. Реактор высокотемпературного хлорирования снабжен внутренней циркуляционной трубой и перфорированными тарелками. К преимуществам высокотемпературного способа относится экономия тепла, расходующегося на ректификацию продуктов, и низкий расход катализатора. Основным недостатком высокотемпературного процесса является низкая селективность (97,0-99,0%), объясняющаяся протеканием побочных реакций. В масштабах крупнотоннажного производства это приводит к значительным потерям исходных реагентов. Побочные продукты - высшие хлорпроизводные этана - не нашли в настоящее время рационального применения и подлежат захоронению или сжиганию, что требует дополнительных затрат и приносит значительный вред экосистеме. Кроме того, в реакторах высокотемпературного хлорирования для полной утилизации хлора в зоне реакции необходимо использовать значительный избыток этилена (до 15% об.), являющегося дефицитным и дорогостоящим реагентом.  [c.308]


В ОАО ИркутскНИИхиммаш совместно с ОАО Саянскхимпром разработан и изготовлен новый опытно-промышленный реактор высокотемпературного жидкофазного хлорирования этилена со струйным эжек-ционпым вводом реагентов.  [c.313]

В хлорной промышленности имеется ряд конструктивно сложных объектов для защиты от коррозии. К ним относятся оборудование и коммуникации, контактирующие с абгазной хлороводородной кислотой (кислотой, загрязненной органическими соединениями), реакторы высокотемпературного хлорирования, биполярные электролизеры с высоким напряжением на клеммах (более 100 В). В последнем случае наряду с высокой агрессивностью могут возникать токи утечки, что приводит к снижению выхода полезных продуктов и к дополнительному коррозионному разрушению оборудования.  [c.100]

Книга посвящена вопросам гидродинамики и теплообмена, возникающим ири проектировании и эксплуатации высокотемпературных газоохлаждаемых ядерных реакторов на тепловых и быстрых нейтронах с шаровыми макро- и микротвэлами. Предложена физическая модель течения газового теплоносителя через различные укладки шаровых твэлов и микротвэлов в бесканальной и канальной активных зонах. Анализируется структура шаровых ячеек и связь параметров с объемной пористостью.  [c.2]

Основные тенденции в усовершенствовании ядерных реакторов АЭС заключаются в увеличении единичных мощностей, знергонапряженности топлива, повышении к. п. д. и коэффициента воспроизводства. Наиболее полно этому удовлетворяют новые типы ядерных реакторов с гелиевым охладителем— высокотемпературный реактор на тепловых нейтронах (ВГР) ч реактор-размножитель на быстрых нейтронах (БГР) [1].  [c.3]

Таким образом, высокотемпературные реакторы с шаровыми твэлами, выполненные по принципу одноразового прохождения активной зоны, наиболее полно удовлетворяют требованию достил<ения высокой температуры гелия на выходе из реактора. Возможности измельчения твэлов и перехода к непосредственному охлаждению гелием микротопливных частиц привели к идее создания газоохлаждаемого реактора-размножителя на быстрых нейтронах (БГР) с полыми коническими кассетами с засыпкой в них микротопливных частиц и продольно-поперечным охлаждением [10].  [c.7]

В этом случае при задержке во времени на переработку накопленного вторичного ядерного топлива 6 месяцев удалось бы получить время удвоения порядка 5 лет [И]. Наиболее подходящим вариантом реактора БГР, отвечающим этим условиям, является высокотемпературный реактор с засыпанным в пустотелых перфорированных кассетах керамическим микротопливом и продольно-поперечным охлаждением топливного слоя гелиевым теплоносителем. При температуре гелия на выходе из активной зоны 750—800° С удается снизить затраты энергии на прокачку гелия до 8% и обеспечить объемную плотность теплового потока 700 MBt/m при максимальной температуре топлива 1000° С [12].  [c.8]

В табл. 1.2 приведены размеры и состав защитных покрытий микротвэлов, которые были испытаны в опытных высокотемпературных реакторах Драгон и AVR, а также расчетные данные по составу и толщинам покрытий микротвэлов реакторов ВГР и ВГР [13, 14].  [c.14]

Конструкции известных высокотемпературных реакторов с шаровыми твэлами, таких, как AVR, THTR-300, достаточно подробно описаны в технической литературе [6, 17].  [c.17]

При разработках высокотемпературных энepгotexнoлoгичe-ских ядерных установок с реакторами ВГР на температуру гелия 900° С и выше ориентируются практически невыполнение реактора ВГР с шаровыми твэлами по принципу норазового прохождения активной зоны либо с несколькими каналами выгрузки, либо со специально выполненной конструкцией нижнего графитового отражателя — пода, обеспечивающей достаточную равномерность движения шаровых твэлов в активной зоне [19].  [c.17]

Успешная эксплуатация опытных высокотемпературных реакторов с гелиевым теплоносителем и строительство прототипов крупных энергоустановок с реакторами ВГР явились толчком к разработкам одновременно во многих промышленно развитых странах газоохлаждаемых реакторов-размножителей на быстрых нейтронах (БГР). Другой причиной появления конкурирующего с жидкометаллическими натриевыми реакторами БН направления развития реакторов БГР явились определенные трудности в освоении промышленных реакторов БН. В материалах Женевской конференции по мирному использованию атомной энергии в докладе Карлоса, Фритиса и Лиса и в работе М. Донне были сделаны попытки сопоставления характеристик реакторов БГР и БН.  [c.31]

Шаровые твэлы высокотемпературного реактора-размножителя БГР, по сравнению с твэлами реактора ВГР, облучаются в активной зоне на порядок большим интегральным потоком быстрых нейтронов (10 нейтр./см ), имеют на два порядка большую среднюю объемную плотность теплового потока (700 кВт/л) и примерно втрое большую энергонапряженность ядерного топлива (400 кВт/кг) при практически одинаковой глубине выгорания ядерного топлива. Помимо этого, защитные оболочки микротвэлов и конструкционные материалы кассет не могут содержать большого количества легких ядер, смягчающих спектр нейтронов в активной зоне реактора БГР, и, следовательно, толщина защитных оболочек должна быть минималь ной, что затрудняет решение вопросов конструкции.  [c.37]

Этот расчет подтверждает преимущества использования в качестве охладителя газообразного водорода, однако из-за хими ческой агрессивности его применение в атомной энергетике пока не предполагается. Поскольку углекислый газ не обладает химической стабильностью и взаимодействует с графитом, вопрос о его применении в высокотемпературном уран-графитовом реакторе также отпадает.  [c.93]

Для сопоставления вариантов и выбора оптимального была проведена серия количественных расчетов на основе зависимостей AT/ATs и Ар1Арв высокотемпературного реактора при различной объемной плотности теплового потока qv- Параметры гелия давление — 5 МПа, температура на входе в активную зону — 300° С, средняя температура на выходе — 950° С, тепловая мощность реактора — 1000 МВт.  [c.100]


Приведенный материал достаточно убедительно подтверждает перспективность развития нового направления в атомной энергетике — высокотемпературных газоохлаждаемых реакторов на тепловых нейтронах ВГР и реакторов-размножителей на быстрых нейтронах БГР с шаровыми твэлами и микротвэлами.  [c.106]

Сквозные дисперсные потоки имеют многочисленные технические приложения пневмотранспорт ряда материалов, движение сыпучих сред в силосах и каналах, сушка в слое и взвеси (шахтные, барабанные, пневматические и другие сушилки), камерное сжигание топлива, регенеративные и рекуперативные теплообменники с промежуточным твердым теплоносителем, гомогенные и гетерогенные атомные реакторы с жидкостными и газовыми суспензиями, химические реакторы с движущимся слоем катализатора или твердого сырья, шахтные и подобные им печи — все это далеко не полный перечень. Возникающие при этом технические проблемы изучаются давно, но разрозненно и зачастую недостаточно. Исследование различных форм существования сквозных дисперсных систем в качестве особого класса потоков, выявление режимов их движения, раскрытие механизма теплообмена и влияния на него различных факторов (в первую очередь концентрации), использование полученных данных для увеличения эффективности существующих и разрабатываемых аппаратов и процессов — все это представляется как чрезвычайно актуальная и важная для современной науки и различных отраслей техники проблема. Так, например, применение проточных дисперсных систем в теплоэнергетике позволяет разрабатывать новые экономичные неметаллические воздухоподогреватели, высокотемпературные теплообменники МГД-установок, системы интенсивного теплоотвода в атомных реакторах, высокоэффективные сушилки, методм энерго технологического использования топлива и др.  [c.4]

В свою очередь каждую из приведенных групп будем различать по важнейшей характеристике дисперсных потоков — концентрации твердого компонента а) теплообменники типа газовзвесь , б) теплообменники типа флюидный поток , падающий слой , в) теплообменники типа движущийся плотный слой . Естественно, что характеристики теплообменников также зависят от взаимонаправления потоков (прямоточные, противоточные, перекрестные, многоходовые схемы), от особенностей твердого компонента (двухкомпонентные, многофазные и многокомпонентные среды мо-нодисперсные и полидисперсные частицы и т. п.), от назначения теплообменника (низкотемпературные и высокотемпературные воздухоподогреватели, регенераторы ГТУ, пароперегреватели, системы теплоотвода в ядерных реакторах и т. п.), от конструктивных особенностей (с тормозящими элементами, с вибрацией, в циклонных аппаратах) и пр.  [c.359]

Таким образом, можно полагать, что газографитовый теплоноситель — весьма перспективный охладитель для высокотемпературных ядерных реакторов. Следует также подчеркнуть перспективность газографиговых потоков и в качестве нового рабочего тела в одноконтурных атомных установках.  [c.392]

Для примерной оценки перспектив использования газографитовых теплоносителей в 1959—1960 гг. автором совместно с сотрудниками в ОТИЛ были проведены сравнительные расчеты -схем английских атомных энергетических установок типа Хантерстон и Хинкли-Пойнт, а также высокотемпературной атомной установки, описанной в [Л. 329]. Во всех случаях имелась в виду замена газового теплоносителя газографитовым теплоносителем, движущимся в виде графитационного слоя либо газографитовой взвеси. Обнаружено, что использование гравитационно опускающегося графитового слоя может разгрузить реактор от избыточного давления, заметно повысить мощность высокотемпературного реактора (при тех же габаритах) и пр.  [c.396]

При использовании газографитовой взвеси в качестве охладителя реакторов выявлена оптимальная (с точки зрения удельной выработки электроэнергии и компактности) скорость газографитовой взвеси. При неизменной геометрии каналов и заданном топливе это оптимальное значение скорости меньше скорости чисто газового теплоносителя. Она близка к скорости взвеси, определяемой из условий равенства затрат мощности на транспорт. Установлено, что замена газового теплоносителя газографитовым при равной мощности на перекачку может позволить увеличить мощность реактора типа Хантерстон примерно вдвое при одновременном уменьшении требуемого числа парогенераторов. Повышение к. п. д. составило 1, 2 абсолютных процента, так как удельная доля затрат на собственные нужды уменьшилась. Согласно расчетам, применение газографитовой взвеси взамен чистого газа (гелия) в высокотемпературных условиях может позволить увеличить мощность атомной уста новки при неизменных габаритах в несколько раз.  [c.396]


Смотреть страницы где упоминается термин Реактор высокотемпературный (HTR) : [c.328]    [c.11]    [c.106]    [c.392]    [c.2]    [c.108]    [c.108]    [c.108]   
Материалы ядерных энергетических установок (1979) -- [ c.22 ]



ПОИСК



Введение. Перспективы развития пдерных энергоустановок с высокотемпературными газоохлаждаемыми реакторами с шаровыми твэлами

Высокотемпературная ТЦО

Высокотемпературные реакторы с гелиевым теплоносителем

Высокотемпературный ядерный реактор

Геометрические и теплотехнические характеристики высокотемпературных теплотехнологических реакторов

Камеры сгорания и высокотемпературный ядерный реактор парогазотурбинных установок

Комплексные схемы энергоснабжения на базе высокотемпературных ядерных реакторов с дальним транспортом теплоты

Оптимизация параметров теплоносителя в высокотемпературных реакторах

Оптимизация параметров теплоносителя и геометрических размеров шаровых твэлов высокотемпературных реакторов

Реактор

Самсонов В.В., Шишкин З.А., Кузнецов А.М., Бальчугов А.В., Харитонов В.И., Мубараков Р.Г. Разработка нового реактора высокотемпературного жидкофазного хлорирования этилена с повышенными технико-экономическими показателями

Физическое и математическое моделирование процессов в высокотемпературных реакторах теплотехнологических установок

Энерготехнологические парогазотурбинные установки с высокотемпературным ядерным реактором



© 2025 Mash-xxl.info Реклама на сайте