Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные дифференциальные уравнения теории пластин

Основные дифференциальные уравнения теории пластин  [c.129]

Раздел IV посвящен построению линейной теории пластин приведены основные дифференциальные уравнения и энергетические соотношения. Обсуждаются приложения этой, теории к исследованию 1) статического механического нагружения 2) статической устойчивости 3) стационарного температурного воздействия 4) динамики пластин и, в частности, свободных и вынужденных колебаний, панельного флаттера и ударного воздействия.  [c.158]


Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]

История вопроса. В теории цилиндрических оболочек основными задачами являются расчет замкнутых цилиндрических оболочек (расчет труб) и расчет незамкнутых цилиндрических оболочек, границами которых являются две образующие и две направляющие (расчет цилиндрических пластин). Обычно эти задачи решаются методом двойных либо одинарных тригонометрических рядов. Из них большую ценность представляет метод одинарных рядов, позволяющий подчинить решение на двух краях оболочки произвольным граничным условиям. Использование одного и другого методов существенно затрудняли громоздкие дифференциальные уравнения задач и их высокий порядок, ввиду чего много внимания было уделено упрощению исходных ( юрмул. Оказалось, что выбор той или иной системы упрощений зависит от соотношений размеров цилиндрической оболочки.  [c.159]


Варианты основных уравнений, относящиеся к данному направлению теории слоистых пластин и оболочек и установленные разными авторами, можно разделить на три группы. Первую составляют уравнения, выведенные преимущественно в ранних исследованиях по неклассической теории слоистых оболочек [8, 215, 253 и др. ]. Здесь уравнения равновесия пластин и оболочек устанавливаются без использования вариационных принципов по следующей схеме. При заданной кинематической гипотезе, позволяющей учесть поперечные сдвиговые деформации, удовлетворить кинематическим и силовым условиям межслоевого контакта и условиям на верхней и нижней граничных поверхностях оболочки, определяются традиционные усилия и моменты, которые и подставляются в уравнения равновесия либо классической теории [8, 215], либо теории, основанной на кинематической модели прямой линии [253 ]. Тем самым остается неустановленной система внутренних обобщенных усилий и моментов, соответствующая принятой геометрической модели. Математически это проявляется в заниженном порядке разрешающей системы дифференциальных уравнений, что не позволяет удовлетворить необходимому числу краевых условий и приводит к существенным погрешностям в определении напряженного состояния оболочки, особенно в зонах краевых закреплений.  [c.9]

Точное определение формы и частоты колебаний пластинки за исключением простейших случаев шарнирно опертой прямоугольной пластинки связано с решением весьма сложных систем дифференциальных уравнений (267), (268) для анизотропных пластин или уравнений (269), (270) для ортотропных пластин. При решении конкретных технических задач весьма эффективными являются приближенные методы, основанные на некоторых общих принципах механики. В теории стержневых систем такие методы позволяют быстро без интегрирования дифференциальных уравнений определять частоты колебаний основных тонов, которые и представляют наибольший практический интерес. Эти методы можно обобщить для случая поперечных колебаний пластин.  [c.92]

В гл. V и VI были рассмотрены задачи нестационарной теплопроводности, в которых теплообмен между поверхностью тела и окружающей средой происходил в основном излучением. В практике тепловых расчетов встречаются задачи, в которых теплообмен между телом и окружающей средой происходит конвекцией. Если в задачах стационарного конвективного теплообмена применяются граничные условия третьего рода, то в задачах нестационарного конвективного теплообмена и в задачах стационарного теплообмена при точной формулировке проблем необходимо применять граничные условия четвертого рода. Например, при обтекании плоской пластины, в соответствии с теорией пограничного слоя, дифференциальное уравнение переноса тепла для жидкости можно написать так  [c.363]

Итак, переход от классической модели деформирования слоистых тонкостенных пластин к той или иной корректной уточненной модели сопровождается увеличением не только порядка системы дифференциальных уравнений, но и спектрального радиуса матрицы ее коэффициентов и, как следствие, появлением быстропеременных решений, имеющих ярко выраженный характер погранслоев и описывающих краевые эффекты напряженного состояния, связанные с учетом поперечных сдвигов и обжатия нормали. Такая ситуация характерна не только для балок или для длинных прямоугольных пластинок, изгибающихся по цилиндрической поверхности, но, как будет показано ниже, и для элементов конструкций других геометрических форм — цилиндрических панелей, оболочек вращения и др. Отметим, что стандратные методы их решения, которые согласно известной (см, [283 ]) классификации делятся на три основные группы (методы пристрелки, конечно-разностные методы, вариационные методы, метод колло-каций и др.), на этом классе задач малоэффективны. Так, группа методов пристрелки, включающая в себя, в частности, широко используемый и весьма эффективный в задачах классической теории оболочек метод дискретной ортого-нализации С.К. Годунова [97 ], на классе задач уточненной теории оболочек оказывается практически непригодной. Методами этой группы интегрирование краевой задачи сводится к интегрированию ряда задач Коши, формулируемых для той же системы уравнений. Для эллиптических дифференциальных уравнений теории оболочек такие задачи некорректны (см., например, [1]), что при их пошаговом интегрировании проявляется в форме неустойчивости вычислительного  [c.109]


Выше мы показали возможность вывода основных уравнени й теории пластин исходя из вариационного принципа Лагранжа. Однако главное значение вариационных принципов в расчете пластин состоит в том, что с их помощью можно получить приближенные решения сложных задач, не прибегая к составлению и решению дифференциальных уравнений в частных производных. Некоторые примеры расчетов с использованием прямых методов вариационного исчисления рассмотрены в 8. Точное аналитическое решение общих уравнений изгиба пластины может быть выполнено лишь в частных случаях — для прямоугольных и круглых пластин постоянной толщины, а также для пластин,  [c.67]

В результате замены исходных дифференциальных уравнений конечно-разностными соотношениями типа (IIL49), (III.50) получим алгебраические выражения, явным образом определяющие х , у . Упругопластические свойства металла учитываются по теории течения. Анализ влияния моментности, других факторов на формоизменение пластин приведен в [66]. Показано, что при прогибах, превышающих 2—8 толщин, движение пластины определяется в основном мембранными и инерционными силами влиянием других факторов при этом можно пренебречь. Результаты расчетов, выполненных при таких предположениях, хорошо согласуются с данными экспериментов [67].  [c.80]


Смотреть страницы где упоминается термин Основные дифференциальные уравнения теории пластин : [c.6]   
Смотреть главы в:

Основы теории упругости и пластичности  -> Основные дифференциальные уравнения теории пластин



ПОИСК



425 — Уравнения пластин

Основные дифференциальные уравнения

Теории Уравнения

Теория пластин

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте