Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения совместности и метод конечного элемента

Уравнения совместности и метод конечного элемента  [c.136]

Вышеизложенные краткие сведения о существующих методах решения задач теории пластичности свидетельствуют о широких возможностях метода линий скольжения, метода совместного решения системы дифференциальных уравнений равновесия и условия пластичности и метода конечных элементов и дают основание использовать их при анализе напряженного состояния и несущей способности сварных соединений тонкостенных оболочек давления.  [c.100]


Истинные методы конечных элементов отличаются от подходов, в которых рассматривается разбиение масс, главным образом тем, что при разбиении конструкции жесткости элементов определяются посредством классических способов статических исследований самих элементов, а не в процессе идентификации конструкции [1.40—1.46]. На рис. 1.12, а показано несколько обычно используемых типов элементов. Каждый элемент определяется с помощью 6, 8, 16 или 20 точек или узлов, в которых задаются условия совместности для перемещений и нагрузок. Исходными переменными являются пространственные перемещения в этих узлах уравнения движения обычно записываются с помощью того или иного вариационного подхода. Энергия деформаций, вычисляемая для каждого элемента, выражается через все узловые перемещения каждому узлу приписывают некоторую массу, и кинетическую энергию выражают через узловые скорости. Поскольку разбивка на элементы производится с учетом геометрии конструкции, отпадает необходимость в процедуре задания жесткостей, а соответствующие члены уравнений вычисляются из непосредственного рассмотрения геометрии каждого элемента. Для адекватного представления сложной конструкции необходимо большое число узлов, поэтому главными вопросами в методе конечных элементов являются  [c.38]

Если функция удовлетворяет условию совместности, то напряжения автоматически определяются из уравнений (32), если выполняются одновременно и граничные условия. Последние являются как раз тем ограничением числа аналитических решений для напряжений в телах сложной формы. Однако для двумерного случая эти задачи довольно просто решаются численными методами конечных элементов или при помощи уравнений в конечных разностях. Для решений задач упругого поведения реальных тел и конструкций широко используются компьютеры (см. гл. П1, разделы 16 и 17).  [c.30]

Возможна иная формулировка метода конечных элементов, следующая из представления о том, что для любого точного или приближенного метода решения задачи теории упругости должны быть удовлетворены уравнения равновесия и условия совместности. В изложенном выше методе перемещений распределение перемещений предполагается таким, что совместность их обеспечивается, поэтому при приближенном решении уравнения равновесия удовлетворяются неточно.  [c.140]

Дальнейшее развитие метода конечных элементов связано с так называемым гибридным методом напряжений. Для каждого элемента применяются формулы для напряжений, которые удовлетворяют уравнениям равновесия элемента. Независимо от этого выбираются формулы для перемещений, обеспечивающие совместность перемещений на границах элементов, причем распределение перемещений на границах должно однозначно устанавливаться по перемещениям узловых точек. При вариационной формулировке оперируют принципами минимума потенциальной энергии и минимума дополнительной энергии деформации или расширенным вариационным принципом (привлекается модифицированный принцип дополнительной энергии Пиана [44, 45]).  [c.140]


В теории упругости имеются три системы соотношений (1) дифференциальные уравнения равновесия (2) соотношения, связывающие деформации с перемещениями, и условия совместности (3) уравнения состояния материала. Для любого тела, имеющего конечные размеры, системы (1) и (2) дополняются граничными условиями. В данной главе выводится каждое из этих соотношений, а затем в общих чертах показано, как нз совокупности указанных соотношений получить определяющую систему уравнений. В заключение приводятся некоторые замечания, касающиеся вопроса единственности решения задач упругости и его значимости для метода конечных элементов.  [c.107]

Применение метода Галеркина из разд. 5.5 к вспомогательным уравнениям упругости, а не к комбинации дифференциальных уравнений (равновесия или совместности) приводит к выражениям с одновременным участием двух полей. Ниже эта же формулировка рассматривается с других позиций, а именно строится функционал, в который входят два поля, и доказывается, что уравнения Эйлера для этого функционала представляют собой соответствующие вспомогательные уравнения теории упругости. Так как вспомогательные уравнения можно записать различными путями, существует несколько функционалов, в которые входят два поля. Здесь рассматривается функционал Рейсснера (П ) [6.16], которому в методе конечных элементов уделяется особое внимание.  [c.194]

Обычно матрица коэффициентов оказывается разреженной (содержит много нулевых элементов), так как в большей части вычислительных схем используется лишь несколько соседних узлов, а не все узлы сетки. Методы решения таких систем уравнений делятся на прямые и итерационные. Прямые методы позволяют получить точ-ное решение, выполнив конечное число операций. Примером прямого метода может служить правило Крамера для решения системы совместных линейных алгебраических уравнений. Обычно для больших систем уравнений прямые методы неэффективны, так как при их применении требуется выполнение огромного объема вычислений и очень большой объем памяти ЭЦВМ. Поэтому чаще пользуются итерационными методами.  [c.113]

На базе уравнений задачи в напряжениях, сведенных к уравнению совместности в виде (19.11), развиты мощные аналитические методы решения плоских задач теории упругости с использованием функций комплексного переменного. Однако эти методы выходят за пределы данного круга и здесь не излагаются. Получение аналитических решений в замкнутом виде для более или менее сложных областей и видов нагрузок представляет большие трудности. Для сравнительно простых случаев решение может быть построено путем подбора функций Ф, заведомо удовлетворяющих уравнению совместности (19.11). Последующая р омбинация этих частных решений может дать с заданным уровнем приближения решение поставленной задачи. Такая задача рассмотрена в 19.4. Эффективные методы решения плоских задач теории упругости дают метод конечных разностей и метод конечных элементов, которые рассмотрены в последующих параграфах.  [c.444]

Метод конечных элементов применяется не только при решении двумерных задач прикладной теории упругости (пластины, оболочки и конструкции, составленные из пластинчатых и оболочечных элементов), но и объемных (трехмерных) задач теории упругости. Для лучшей аппроксима-цпи сложной формы копструкцип применяются наряду с прямоугольными конечными элементами также конечные элементы других форм. Этот метод может применяться не только в форме метода перемещений, когда за неизвестные принимаются узловые перемещения и определяются они из уравнений равновесия, но и в форме метода сил, когда за неизвестные принимаются узловые внутренние усилия а определяются они из условия совместности перемещений в узловых точках.  [c.228]

Сравнение расчетов с экспериментами. В работе [31] для определения деформаций и напряжений во фланцевом соединении сосудов без нажимных колец использовались также два расчетных метода. Приближенный метод осуществлялся путем разбиения фланцевого соединения на базисные элементы - кольца, оболочки, балки. Поперечные силы и моменты в местах их соединений определялись из уравнений равновесия и совместности деформаций. Второй подход использует метод конечных элементов, для чего применялась программа MAR для ЭВМ /5Л/-370. Наличие в программе специальных люфтовых элементов позволяет моделировать нелинейную контактную задачу, связанную с локальным смыканием и (или) раскрытием зазора между поверхностями фланцев и проклад-  [c.153]


В данной главе описаны различные методы расчетов распределения напряжений вокруг острых концентраторов напряжений или трещин. Все аналитические решения включают использование в той или иной форме комплексных переменных. Функции напряжений Вестергаарда обычно позволяют получить основные параметры полей напряжений у вершины трещины, но в более сложных случаях, относящихся к реальным образцам, необходимо использовать функцию напряжений в виде полинома или конформные отображения. Для моделирования трещин могут быть использованы и ряды дислокаций. Метод конечных элементов применяется все шире, вытесняя постепенно метод уравнений в конечных разностях, тем самым широко привлекая вычислительную технику для решения большого числа совместных линейных уравнений, представленных матрицей жесткости. Для моделирования упруго-пластической деформации по типу I при плоском  [c.88]

В монографии изложены результаты исследования напряженно-деформированного состояния контактирующих элементов конструкций, полученные с помощью метода конечных элементов и метода граничных интегральных уравнений, известного также под названием метод граничных элементов. Эти перспективные современные численные методы удобны для решения на ЭВМ широкого класса контактных задач механики деформируемого тела и в рамках одной программной реализации позволяют учесть большое число практически важных факторов, таких, как сложная геометрия и произвольный характер внешних воздействий, различные условия контактного взаимодействия. Метод конечных элементов представляется более универсальным, так как позволяег легко учесть физическую и геометрическую нелинейность, объемные силы, зависимость свойств материала от температуры. В методе граничных элементов учет этих факторов настолько увеличивает рудоемкость решения задачи, что сводит на нет основные преимущества метода, такие, как дискретизация только границы области и малый объем входной информации. Поэтому в книге метод граничных элементов использован только для решения контактных задач теории упругости, где наряду с простотой задания исходной информации он может дать и выигрыш машинного времени за счет понижения размерности задачи на единицу, особенно для бесконечных и полубесконечных областей. Метод граничных элементов позволяет построить также более совершенный алгоритм для учета трений в зоне контактных взаимодействий. По-виднмому, еще большего выигрыша следует ожидать в некогорых задачах при совместном использовании обоих методов.  [c.3]

В настоящее время наибольшее распространение для оценки предельной несущей способности металлоконструкций получили такие методы как метод совместного решения уравнений равновесия и условий пластичности, вариационные методы, метод линий скольжения (метод характеристик), метхзд конечных элементов и другие.  [c.98]

Здесь представим только общие соображения по расчету нелинейных систем, поскольку эта тема выходит за рамки данной работы. Нелинейные задачи деформирования стержней, пластин и оболочек весьма разнообразны и каждая задача требует индивидуального подхода. Однако, если нелинейные модули образуют целостную систему, то для узловых точек (линий) всегда будут справедливы уравнения равновесия между статическими параметрами и уравнения совместности перемещений между кинематическими параметрами. Это значит, что топологическая матрица С в алгоритме МГЭ для нелинейных систем будет формироваться из анализа матриц X ж Y точно так же, как для упругих систем. Основные же трудности решения нелинейных задач заключаются в определении внутреннего содержания матриц А В, т.к. построить фундаментальные функции нелинейных дифференциальных уравнений за небольшим исключением не удается. В этой связи получили развитие различные подходы к решению нелинейных краевых задач [83]. К первому направлению относятся проекционные и вариационные методы типа методов Бубнова и Ритца, методы конечных разностей и конечных элементов. Этими методами нелинейные краевые задачи сводятся к системам нелинейных  [c.512]

Идея МКЭ и алгоритм решения задачи о напряженно-деформированном состоянии с помощью МКЭ демонстрируются в гл. 1 на примере элементарных задач об осевой деформации стержня. Далее МКЭ излагается в гл. 2—6 применительно к задачам теплопроводности и термоупругости, причем выбор рассматриваемых в книге типов конечных элементов обусловлен конфигурацией таких подлежащих исследованию деталей тепловых двигателей, как поршни и цилиндровые втулки дизелей различного назначения. Параллельно с изложением алгоритма МКЭ демонстрируются реализующие эти алгоритмы программные модули комплекса, созданного автором и предназначенного специально для расчета деталей тепловых двигателей. Программы и программные комплексы записаны на языке Фортран, так что книга предполагает знакомство читателя с этим алгоритмическим языком. В книге большое внимание уделено вопросам рационального использования всех ресурсов ЭВМ и эффективной организации всего процесса вычислений при решении больших по размеру прикладных задач приводятся программы вычисления матриц жесткости, инвариантные к виду конечного элемента. В 1л. 7—8 приводится компактная схема организации формирования глобальной матрицы системы уравнений МКЭ, подробно излагаются приемы организации исходных данных, опыт реализации с использованием периферийной памяти схем метода Холецкого и метода сопряженных градиентов для решения больших систем уравнений МКЭ, С помощью разработанных программных комплексов автором выполнены исследования температурных полей и напряженно-деформированного состояния ряда деталей тепловых двигателей. Результаты этих исследований приведены в гл. 9—10 книги. В. Н. Николаевым написан п. 5 гл. 9, гл. 10 — совместно с канд. техн. наук М. В. Се-менченко.  [c.4]



Смотреть страницы где упоминается термин Уравнения совместности и метод конечного элемента : [c.106]    [c.146]    [c.120]    [c.254]   
Смотреть главы в:

Приложение методов теории упругости и пластичности к решению инженерных задач  -> Уравнения совместности и метод конечного элемента



ПОИСК



261, совместных

Конечный элемент

Метод конечных элементов

Метод совместности

Совместность

Уравнение конечное

Уравнение метода сил

Уравнение совместности

Уравнения Элементы



© 2025 Mash-xxl.info Реклама на сайте