Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Твердые тепловое расширение

Потенциальная энергия взаимодействия двух атомов для отрицательных значений х обычно существенно отрицательна (т. е. соответствует отталкиванию), и поэтому S и х) положительны, что соответствует расширению твердых тел при их нагревании. Немногие известные случаи сжатия твердых тел при нагревании связаны преимущественно с эффектами магнитного упорядочения спинов электронов. Для сплавов с малым коэффициентом расширения, например таких, как инвар, тепловое расширение и магнитное сжатие взаимно компенсируют друг друга в той области температур, которая представляет практический интерес.  [c.239]


ТЕПЛОВОЕ РАСШИРЕНИЕ ТВЕРДЫХ ТЕЛ  [c.183]

Таким образом, расстояние между атомами, совершающими гармонические колебания, при нагревании не изменяется, так как их среднее смещение <л >=0, а следовательно, и тепловое расширение должно отсутствовать, что противоречит реальной ситуации. Все твердые тела при нагревании расширяются. Для большинства твердых тел относительное расширение при нагревании на ] К составляет примерно 10 =. В табл. 6.1 приведены значения температурных коэффициентов линейного расширения для некоторых изотропных веществ.  [c.184]

Равновесное состояние твердого тела не исчерпывается набором механических переменных 5 и е оно определяется также температурой, введение которой позволяет рассматривать новый параметр—линейный коэффициент теплового расширения а. Удлинение т пропорционально увеличению температуры ДТ и начальной длине х  [c.9]

При нормальных условиях модуль всестороннего сжатия для твердого тела приблизительно в миллион раз больше,, чем для газообразного. Величина, обратная р, называется сжимаемостью (коэффициентом сжатия). Таким образом, газы примерно в миллион раз более сжимаемы, чем твердые тела, тогда как коэффициент теплового расширения газа в 10 и даже в 100 раз больше, чем коэффициент твердого тела. Коэффициент объемного расширения, который в. три раза больше коэффициента линейного расширения а, оп-  [c.10]

Жидкость похожа на газ тем, что Е и О также равны нулю, ее форму можно изменять как угодно, не применяя особого напряжения. И все же жидкость более всего похожа на твердое тело. Коэффициент теплового расширения ее и сжимаемость обычно имеют значения намного меньшие, чем соответствующие коэффициенты газов. Жидкость к тому же может испытывать небольшое отрицательное давление, чем и объясняется появление кавитации.  [c.10]

ПЛОТНОЙ упаковкой имеют одно и то же координационное число 12. Действительно, эти две структуры очень близко связаны они показывают порядок расположения наиболее плотной упаковки одинаковых твердых сфер в пространстве. Или, например, железо. При комнатной температуре оно имеет объемноцентрированную кубическую структуру (а—Ре), но при температуре выше 900° С железо приобретает гранецентрированную кубическую структуру (у-железо). При нагревании железо расширяется вследствие явления теплового расширения, однако по достижении температуры перехода, (а- -у) оно сжимается, так как атомы попадают в расположение с более плотной упаковкой и образуют гранецентрированную кубическую структуру.  [c.17]


Говоря о теплоемкости, будем иметь в виДу теплоемкость при постоянном объеме v, которая является более фундаментальной величиной, чем теплоемкость при постоянном давлении Ср, обычно определяемую в экспериментах. Однако разность Ср—С часто мала из-за ничтожно малого теплового расширения твердых тел. Если полная энергия колебаний кристаллической решетки (на 1 г, 1 см или на 1 моль) есть и, то теплоемкость решетки при постоянном  [c.35]

Пусть и х, у. Z, t) — удельная внутренняя энергия. Изменением объема тела вследствие теплового расширения будем пренебрегать поток частиц в случае твердого тела также исключен. Поэтому из (13.15) имеем  [c.259]

Термометры, основанные на тепловом расширении веш ества, широко используются с термометрическим телом в жидком состоянии это жидкостно-стеклянные термометры (см. 9.2). Но имеются термометры этого вида и с твердым термометрическим телом дилатометрические и биметаллические их действие основано на различии коэффициентов линейного теплового расширения двух материалов (например, инвар — латунь, инвар — сталь).  [c.172]

Твердое тело неравномерно нагревается до температуры Т, являющейся функцией X, у, г. Если предположить, что каждый элемент обладает неограниченным тепловым расширением, компоненты деформации будут иметь вид  [c.286]

Типичными примерами статических законов состояния могут служить закон Гука, закон теплового расширения твердых тел и др. На основании этих законов получены расчетные зависимости для решения различных инженерных задач.  [c.62]

При нагревании подавляющее большинство твердых тел испытывает расширение, приводящее к изменению их размеров. Различие коэффициентов теплового расширения (КТР) вызывает появление внутренних напряжений в пленках, покрытиях, адгезионных соединениях, сварных швах и т. д., что не всегда желательно и допустимо. Поэтому практически важным является согласование КТР материалов, идущих на изготовление РЭА. Для подбора этих материалов и направленного изменения их КТР требуется знание физической природы самого явления теплового расширения тел Рассмотрим кратко ее суть.  [c.135]

Рис. 4.5. К расчету теплового расширения твердых тел Рис. 4.5. К расчету <a href="/info/16570">теплового расширения</a> твердых тел
В своем капитальном труде Н. С. Курнаков рассматривает измеримые физические свойства веществ, применяемые в физико-химическом анализе. Общее число таких свойств достигает 30. Среди них тепловые свойства — плавкость и растворимость, теплота образования, теплоемкость, теплопроводность электрические свойства — электрическое сопротивление, электродвижущая сила, термоэлектрическая сила, диэлектрическая проницаемость объемные свойства — удельный вес и удельный объем, объемное сжатие, коэффициент теплового расширения. При физико-химическом анализе измеряются также основные оптические свойства объектов исследования, свойства, основанные на молекулярном сцеплении (вязкость, твердость, давление истечения, поверхностное натяжение и др.)) магнитные свойства и многие другие. В физико-химическом анализе широко применяется изучение микроструктуры систем, позволяющее определить их фазовый состав. В последние десятилетия физико-химический анализ пополнился таким важным методом исследования, как рентгенография, который позволяет установить параметры и структуру кристаллографических решеток твердых фаз изучаемой системы  [c.159]


Термические свойства стекла характеризуют его как материал, отличающийся ОТ других твердых тел исключительно низкой теплопроводностью и способностью изменять коэффициент теплового расширения в очень широких пределах (в 10 и более раз).  [c.452]

Германий — твердый серебристо-серого цвета металл. Плотность 5,35 г/см температура плавления 936 С, температура кипения 2700° С, скрытая теплота плавления 8100 кал/г, удельная теплоемкость 0,074 кал/(г-°С), коэффициент линейного теплового расширения 6,1 IQ-e см/° С, твердость по Моосу 6.  [c.193]

В 1959 г. было предложено осуществлять такие сплавы приемами порошковой металлургии на базе металлических компонентов, отличающихся тем, что один из них обладает меньшим, а а другой — большим тепловым расширением, чем керамика, и взаимодействие их в твердом и жидком состоянии слабо выражено.  [c.111]

Законы состояния можно разделить на статические, когда в функциональную зависимость, описывающую связь между входными и выходными параметрами, фактор времени не входит, и на переходные процессы, где учитывается изменение выходных параметров во времени. Типичными примерами статических законов состояния могут служить закон Гука, закон теплового расширения твердых тел и др.  [c.91]

Для твердых тел вследствие их малого теплового расширения Ср и Сц имеют близкие вначения. Например, для медн при комнатной температуре ср су шш 1,03.  [c.41]

Таким образом, необходимые для грануляции внутренние напряжения возникают при быстром переходе шлака из жидкотекучего состояния в твердое. На образование больших внутренних напряжений в шлаке оказывает благоприятное воздействие и большое тепловое расширение шлака.  [c.218]

Естественная компенсация расширения трубопровода (т. е. без использования тепловых компенсаторов) является простейшей. Компенсация трубопроводов из полимерных материалов и металлов не имеет принципиальных отличий. На фиг. XV. 31 приведена номограмма для определения 1) минимальной длины прямолинейного отрезка трубы из твердого полихлорвинила, позволяющей компенсировать тепловое расширение перпендикулярного к ней участка трубопровода и 2) силы, действующей на неподвижное крепление той части трубопровода, которая компенсирует тепловое расширение.  [c.328]

В заключение следует остановиться на особенностях теплового расширения титановых а 4- Р-сплавов, находящихся в метаста-бильном (а не отожженном, как рассматривалось до сих пор) состоянии. Тепловое расширение образцов а + р-сплавов, в которых в результате закалки зафиксировано большое количество метастабильных твердых растворов ф, р -f- а ), отличается от расширения образцов со стабильной а -f Р-структурой. При нагреве до 200—250° С тепловое расширение отожженных и закаленных образцов одинаково, но в интервале от 250 до 400—450° С происходит сокращение объема из-за структурных изменений. При более высоких температурах наблюдается обратное явление. Указанные эффекты, фиксируемые при непрерывном нагреве, отражают лишь те процессы, которые успевают проходить за время нагрева. В полном объеме эти процессы протекают при изотермических выдержках. При этом на завершение процесса сокращения требуется, как правило, десятки минут или несколько часов в частности у сплава ВТЗ-1, закаленного от 800—1000° С, по данным [51 ], сокращение при 500° С завершается за 20—40 мин, а при 250° С продолжается более 6 ч. Величина эффекта сокращения, скорость его протекания, интервал температур, в пределах которого он наиболее ярко выражен, зависит от количества и устойчивости метастабильных растворов (в основном Р-фазы) в сплавах. Увеличение количества р-фазы, фиксируемой закалкой, в результате повышения температуры закалки или увеличения Р-стабилизирующих элементов интенсифицирует во всех отноше-  [c.26]

Так же как и у стареющих алюминиевых сплавов, структурное сокращение объема титановых сплавов обусловлено ранними стадиями распада р-твердых растворов и неизбежно сопровождается возникновением напряжений 2-го рода в микрообъемах. В случае неоднородности твердых растворов по сечению изделий (например, из-за несквозной прокаливаемости) сокращение и тепловое расширение в разных объемах массивных изделий различно, что приводит к возникновению напряжений 1-го рода.  [c.27]

Цель работы — определение коэффициента линейного теплового расширения твердых материалов дилатометрическим методом.  [c.27]

Точное определение параметров элементарной ячейки имеет большое практическое значение при изучении состава, структуры и физико-химических свойств многих кристаллических материалов, особенно металлов и сплавов. Так, непрерывная регистрация изменений параметров решетки по мере изменения температуры позволяет определить коэффициент теплового расширения. Зависимость параметров элементарной ячейки от наличия примесей в исследуемом веществе дает возможность определить состав твердых растворов и фазовые границы на диаграммах равновесия. С помощью точно измеренных размеров элементарной ячейки можно определить плотность, а также молекулярные веса кристаллов. Даже весьма незначительные изменения параметров решетки позволяют выявить причины появления внут-  [c.46]

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ЛИНЕЙНОГО ТЕПЛОВОГО РАСШИРЕНИЯ ТВЕРДЫХ МАТЕРИАЛОВ ДИЛАТОМЕТРИЧЕСКИМ МЕТОДОМ  [c.84]

В различных технологических процессах и механизмах твердые материалы подвергаются тепловому воздействию, в результате чего в них происходят физико-химические явления, в том числе изменение размеров (линейное и объемное расширения). Неконтролируемое тепловое расширение конструкционных материалов может привести к ухудшению эксплуатационных характеристик и как крайний вариант— к несчастным случаям,.. Знание зависимости теплового расширения твердых материалов от интенсивности нагрева (температуры) имеет большое значение при конструировании и создании различных нагревательных и осветительных устройств, двигателей внутреннего сгорания, газотурбинных и реактивных двигателей, тепловых регуляторов (реле), дымоходов, при сварочных работах, расчете термических напряжений и т.д.  [c.84]


Изменение размеров твердых материалов при нагреве обусловлено изменением потенциала взаимодействия атомов в кристаллической решетке. Коэффициенты линейного (объемного) теплового расширения зависят в основном от состава и строения материала, а также от степени нагрева (температуры).  [c.85]

При рассмотрении колебаний атомов кристаллической решетки а также теплоемкости твердых тел, связанной с этими колебания ми, предполагалось, что силы, действующие между атомами, упру гие и атомы совершают гармонические колебания с малыми ам плитудами около их средних положений равновесия. Это позволи ло разделить весь спектр колебаний на независимые моды, рассчи тать в этом приближении тепловую энергию кристалла и получить формулу для теплоемкости, хорошо описывающую ее поведение при низких и высоких температурах. Однако для объяснения ряда явлений, таких, например, как тепловое расширение твердых тел и теплопроводность, сделанных предположений уже недостаточно и необходимо принимать во внимание тот факт, что силы взаимодействия между атомами в решетке не совсем упругие, т. е. они зависят от смещения атомов из положения равновесия не линейно, а содержат ангармонические члены второй и более высоких степеней, влияние которых возрастает с ростом температуры.  [c.183]

Ионная поляризация (С , Q на рис. 1-1, б) характерна для твердых тел с ионным строением и обусловливается смещением упруго-связанных иоиов. С повышением температуры она усиливается в результате ослабления упругих сил, действующих между ионами, Аз-за увеличения расстояния между ними при тепловом расширении. Время установления ионной поляризации около 10 с.. Ципольно-релаксационная поляризация (С .р, рд.р, Гд.р) для <раткости называется дипольной, отличается от электронной и ион-юй тем, что она связана с тепловым движением частиц. Диполь-1ые молекулы, находящиеся в хаотическом тепловом движении, частично ориентируются под действием поля, что и является причи-10Й поляризации.  [c.19]

Хотя теория деформируемого слоя оказалась непригодной для композитов, армированных стекловолокном, из-за чувствительности каучукоподобных полимеров на поверхности стекла к действию воды, тем не менее она оказывается полезной при раосмотре-нии связи между жесткими полимерами и гидрофобным волокном, подобным графиту. Свойства композита, состоящего из графита и твердого полимера, ухудшаются в основном под действием термических напряжений, так как графит имеет очень низкий коэффициент линейного Теплового расширения. В данном случае невозможно гидролитическое равновесие на поверхности раздела, которое способствовало бы снятию напряжений по химическому механизму. В то же время благодаря наличию деформируемого слоя возможна меканиЧёскАя релаксация напряжений, так как связь органических. полимеров с графитом не чувствительна к воздействию воды.  [c.38]

Интересным н важным является вопрос о тепловом расширении ферромагнитных тел. В гл. 4 было показано, что расширение твердых тел при нагревании обусловлено ангармоническим характером колебаний частиц около положений равновесия. У диамагнитных и парамагнитных твердых тел это является единственной причиной их расширения. Обозначим КТР, обусловленный ангармонизмом, через В ферромагнитных материалах дело обстоит сложнее. Изменение температуры приводит к изменению их намагниченности и тем самым к изменению их размеров. Это явление было названо Акуловым термостракцией. Обозначим КТР, обусловленный термострикцей, через а . Полный КТР ферромагнетика равен а = ад + а ,. КТР всегда положителен, КТР Кц, мом ет быть и положительным, и отрицательным. Поэтому результирующий КТР ферромагнетиков может быть положительным, равным нулю я отрицательным. В частности, к ферромагнитным материалам, имеющим отрицательную ферромагнитную составляющую КТР ( м). относятся инвар-ные сплавы. На рис. 11.31 приведена зависимость КТР железоникелевых и железоплатиновых сплавов от их состава. У сплавов, содержащих 36% никеля, КТР примерно в 10 раз меньше, чем у чистого никеля и железа у сплава, содержащего 56% пластины, КТР отрицателен.  [c.318]

I, - 2. Малый коэффициент теплового расширения, высокая теплопроводность, низкая удельная теплоемкость и малый коэффициент трения — эти свойства определяют весьма выгодные условия работы алмаза с точки зрения тепловой напряженности. Теплопроводность алмаза в 5 раз выше, чем теплопроводность твердого сплава Т15К6, а коэффициент линейного расширения в 8—И раз меньше, чем для быстрорежущей стали,  [c.57]

Тепловое расширение и плотность твердого тетрафторметана также измеряли в нескольких работах. Данные ранних работ [5.66, 5.81, 5.88] показаны на рис. 52. В 70-е годы во ФТИНТ выполнены две серии измерений теплового расширения поликристаллических образцов а — F4 [5.30, 5.8]. В первой по времени работе [5.30] коэффициент линейного расширения а измерен кварцевым дилатометром в интервале 10—60 К и при 78 К в высокотемпературной фазе. Скачок объема при фазовом пре-враш.ении в твердом F4 оказался равным 5,1 % относительно объема при 77 К, что практически совпадает со значением 4,9 %, полученным Стюартом и Ля Роком [5.87]. Таким образом, принимая мольный объем твердой фазы при 77 К 1 тв = 45,3 см /моль [5.88], для скачка объема при а—р-переходе получим Av = = (2,25 0,05) см /моль.  [c.207]

Сак правило, с ростом температуры наблюдается устойчивое и равномерное возрастание коэффициентов теплового расширения. Однако для некоторых материалов (например, горных пород) при фазовых переходах, полиморфных превращениях, химических реакциях и т.д., возникающих при нагреве, возможны другие температурные зависимости и даже уменьшение размеров образцов. Значения коэффициентов линейного теплового расширения для некоторых твердых материалов приведены в приложении. Для изотропных твердых материалов значение коэффициента объемного теплового расширения в 3 раза больше значения коэффициента линейного теплового расширения.  [c.85]


Смотреть страницы где упоминается термин Твердые тепловое расширение : [c.86]    [c.58]    [c.415]    [c.139]    [c.260]    [c.261]    [c.49]    [c.17]    [c.253]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.149 ]



ПОИСК



Определение коэффициента линейного теплового расширения твердых материалов дилатометрическим методом

Тепловое расширение

Тепловое расширение твердых жидких тел

Тепловое расширение твердых и жидких тел — Явления переноса количества тепла

Тепловое расширение твердых тел и жидкостей

Термометрия по тепловому расширению твердого тела



© 2025 Mash-xxl.info Реклама на сайте