Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стадии при изгибе

Рассмотрим обе стадии при изгибе с вращением гладких образцов. Поверхность образца подвергается последовательно воздействию максимальных растягивающих и сжимающих напряжений (см. рис. 2). Если эти напряжения превышают предел упругости в некоторых поверхностных зернах, то последние подвергаются знакопеременной пластической деформации. На практике указанная деформация обратима не полностью. Это приводит к сле-  [c.219]

Пренебрегая стадией неустановившейся ползучести, определить наибольшее нормальное напряжение в опасном сечении балки и наибольший прогиб ее через 4000 часов после нагружения. Исследовать два варианта поперечного сечения балки с одинаковыми моментами сопротивления при изгибе прямоугольное с высотой 80 мм и шириной 29 мм (высота параллельна плоскости действия нагрузки) и круглое диаметром 68 мм. При расчете балки, круглого сечения воспользоваться указаниями задачи 9.89.  [c.333]


Расчеты по допускаемым напряжениям и по предельным нагрузкам приводят к различным результатам в случаях, когда в упругой стадии работы системы напряжения в поперечных сечениях ее элементов распределены неравномерно (например, при изгибе или кручении), и в тех случаях, когда система статически неопределима (даже при равномерном распределении напряжений).  [c.274]

Измерение прогиба образца. Позволяет судить не только об относительной длительности стадий упрочнения и разрыхления, но и о распространении усталостной трещины. При изгибе замеры производят [34] одновременно чувствительным потенциометрическим датчиком с электрическим усилением сигнала (мостовая схема) и индикатором часового типа (точность 0,001 мм) измерения сопровождаются записью на диаграммной ленте.  [c.39]

Если считать, что процесс усталостного разрушения на стадии возникновения усталостной трещины состоит из двух этапов (1 — возникновение поверхностных трещин в результате скольжения в наиболее благоприятно ориентированных зернах и 2 — преодоление трещиной границы зерна и распространение ее на несколько зерен), то можно предположить, что на первом этапе основное влияние на разрущение оказывают амплитуда касательных напряжений и их градиент, а на втором — максимальные нормальные напряжения. Таким образом, параметром, которым различаются переход от первого ко второму этапу развития начальной усталостной трещины при изгибе и кручении, является критический размер трещины. При изгибе это примерно одно-два кристаллических зерна, при кручении — площадка размером до 1 мм. Сопоставление числа первичных усталостных трещин, возникающих на поверхности образцов при кручении и изгибе, в условиях действия критического напряжения сдвига на базе 10 циклов нагружения, показывает, что при кручении начальных трещин образуется значительно больше (табл. 10).  [c.84]

Любой реальный материал обладает некоторым комплексом свойств, результирующее влияние которых и определяет его сопротивление усталости. При этом одни и те же свойства могут оказывать различное воздействие на разные стадии усталостного процесса. Так, сопоставление областей существования нераспространяющихся усталостных трещин при изгибе с вращением в образцах с кольцевым надрезом из низкоуглеродистой (0,13 % С Ob = 425 МПа) и среднеуглеродистой (0,34 % С (Тв = 553 МПа) сталей, приведенное на рис. 19,6, показывает, что одно и то же изменение свойств материала может увеличить предельные напряжения возникновения усталостных трещин и уменьшить предельные напряжения, необходимые для роста трещин. В результате область существования нераспространяющихся трещин для среднеуглеродистой стали оказывается существенно большей, чем для низкоуглеродистой. В общем виде свойства материала проявляются в том, что для сталей с более высокими прочностными характеристиками (св, От) наблюдается более низкая скорость роста усталостных трещии.  [c.96]


При сдвиге, растяжении или сжатии величина почти одинаковая (10 —10- ). При изгибе и кручении коэффициент упрочнения на стадии / больше ц упрочнение близко к параболическому.  [c.22]

Условие местной устойчивости труб в закритической стадии при совместном действии сжатия и изгиба (без запаса устойчивости)  [c.274]

В дальнейшем мы не будем применять метод А. В. Верховского для определения касательных напряжений. Для чисто упругой деформации мы непосредственно используем результат, полученный А. В. Верховским для напряжений, нормальных к соответствующим сечениям. Для упруго-пластической деформации и для деформации ползучести используем деформационные гипотезы А. В. Верховского, подобно тому, как гипотеза плоских сечений при изгибе стержней постоянного сечения используется для упруго-пластической стадии деформации [13] и стадии ползучести [14]. Однако в этих случаях напряжения, нормальные к соответствующим сечениям, должны быть определены на основании соответствующих нелинейных зависимостей между напряжениями и деформациями (или скоростями деформации). При этом плоская деформация приближенно заменяется линейным напряженным состоянием.  [c.129]

Коэффициент (о )п, ,х характеризующий концентрацию напряжений при изгибе зубцов в стадии упругой деформации и в стадии установившейся ползучести  [c.164]

При расчете на растяжение наиболее опасными с точки зрения прочности являются первая впадина хвостовика лопатки и последняя впадина выступа диска, так как в первом случае достигает максимума сила Fj, а во втором случае — сила F . [см. фор-мулы (1.4) и (1.5) ] при изгибе зубцов во всех стадиях работы замка, кроме стадии неустановившейся ползучести, наиболее опасными являются первая и последняя пары зубцов в стадии неустановившейся ползучести наиболее опасная пара зубцов должна быть определена расчетом.  [c.177]

Пластический шарнир — местное разрушение, возникающее на стадии текучести при изгибе балки или рамы и сопровождаемое поворотом примыкающих к шарниру элементов.  [c.14]

О соотношении модулей упрочнения при однородном и неоднородном напряженных состояниях для некоторых из исследованных материалов можно судить по данным, приведенным в табл. 19. Существенное влияние градиента напряжений на интенсивность протекания процессов пластического деформирования в поверхностных слоях циклически деформируемых образцов из различных металлов отмечено также в работе [208], в которой было найдено, что при изгибе при одном и том же напряжении относительное число зерен, охваченных пластической деформацией, уменьшается с увеличением градиента напряжений. На рис. 125 выполнено сравнение результатов исследования площади петли гистерезиса D, измеренной на стадии стабилизации процесса неупругого деформирования по методике, описанной в параграфе  [c.171]

Решение первой задачи может быть проведено на образцах любой геометрии. При изгибе с вращением круглых образцов целесообразно проводить испытания путем простого чередования двух уровней размаха напряжений. При этом четкое различие в блоках двух уровней нагрузок достигается путем чередования уровней через 20—30 циклов, а различие в уровнях напряжений не должно превышать 30—40% [248]. Указанный метод относится к использованию электронных микроскопов в анализе излома на всех стадиях роста трещины.  [c.290]

На рис. 29 приведены типичные кривые ползучести при изгибе стеклопластика СВАМ в условиях незначительных колебаний температуры. Повышение температуры к концу испытания вызвало увеличение прогибов всех образцов и переход одного из них в стадию разрушения.  [c.94]

Другой путь основан на представлении об упруго-пластическом теле. Здесь предельная нагрузка отвечает конечной стадии упруго-пластической деформации тела, нередко сопровождающейся большими (иногда — бесконечно большими) деформациями (например, при изгибе и кручении). Фактически этот процесс не прослеживается, и сразу определяется конечное состояние тела при условии малости изменений его конфигурации. Такой переход можно оправдать относительной малостью деформаций упруго-пластического тела при нагрузках, приближающихся к предельной. В обоих случаях теоремы идентичны, речь идет лишь об интерпретации конечных результатов. Мы будем исходить из схемы жестко-пластического тела, не требующей оговорок и внутренне более последовательной. Для этой схемы более естественно формулируются и конкретные краевые задачи. Не нужно, конечно, забывать, что вся сумма допущений содержится в идее жестко-пластического тела и пригодность этого представления должна всякий раз подвергаться анализу. По этой схеме нельзя обсуждать важные вопросы о приспособляемости конструкций, связанные с наличием в ней остаточных напряжений. Эта проблема неизбежно возвращает нас к упруго-пластическому телу.  [c.102]


При о р > Опц потеря устойчивости при изгибе будет происходить в пластической стадии деформации. Вследствие недостаточной изученности вопроса об устойчивости балок за пределом пропорциональности в тех случаях, когда з р > о ц, по предложению Ясинского, величина критического напряжения при изгибе уменьшается во столько раз, во сколько критическое напряжение при сжатии по формуле Эйлера больше соответствующего действительного критического напряжения за пределом пропорциональности.  [c.441]

Однако при исследовании начальной стадии развития пластической деформации или изучении распределения деформаций в случае неравномерного распределения напряжений (например, при изгибе, при кручении или при испытаниях надрезанных образцов) 168  [c.168]

Деформирующее усилие при одноугловой гибке. Определение деформирующего усилия, необходимого для гибки одноугловых деталей в штампах, представляет определенные трудности, вследствие чего данный вопрос может быть решен лишь приближенно. Это объясняется тем, что усилие гибки зависит от большого числа факторов, к которым относятся форма и размеры поперечного сечения заготовки, характеристики ее механических свойств, расстояние между опорами, радиусы скругления пуансона и рабочих кромок матрицы, условий контактного трения и др. Более того, усилие, необходимое для гибки заготовок в одноугловом штампе, зависит от полноты контакта изгибаемой заготовки, пуансона и матрицы, в связи с чем различают отдельные стадии гибки. Вначале наступает стадия свободного изгиба — от начала гибки, когда заготовка соприкасается с инструментом только в трех точках (рис. 7.5, а), до момента прилегания прямолинейных участков заготовки к угловому пазу матрицы (рис. 7.5, б). На стадии свободного изгиба радиус изгиба заготовки больше радиуса скругления пуансона.  [c.93]

Гибка в штампах происходит под действием поперечной силы, приложенной к заготовке между опорами. Однако закономерности, полученные для изгиба моментом, с известным приближением, могут быть использованы при изгибе поперечной силой (что подтверждено проведенными экспериментами), за исключением изгиба на малые радиусы, значение которых соответствует стадии объемного чисто пластического изгиба.  [c.97]

Как определить деформирующее усилие при одноугловой гибке на стадии свободного изгиба  [c.294]

Расчет по упругой стадии. Прочность элементов при изгибе в одной из главных плоскостей проверяется по формулам  [c.73]

Проверка прочности изгибаемых элементов при изгибе в двух главных плоскостях в предположении работы элемента только в упругой стадии проводится по формуле  [c.17]

Как всегда, определению перемещений в упруго-пластической стадии предшествует выяснение напряженного состояния. При косом изгибе стержня возможны два характерных вида эпюр напряжений (рис. 103 и рис. 104). Эпюра, представленная на рис. 103, характеризуется тем, что зона упрочнения (или теку-  [c.188]

Рассматривая основные понятия и определения, мы без доказательства утверждали, что при прямом изгибе возникают поперечная сила и изгибающий момент. Теперь необходимо привести соответствующие обоснования. Надо изобразить на доске произвольным образом нагруженную (в главной плоскости) двухопорную балку, определить реакции и, применив метод сечений, убедиться, что в произвольном поперечном сечении балки возникают поперечная сила Qy и изгибающий момент Мх. Остальные четыре внутренних силовых фактора тождественно равны нулю. Естественно, на этой стадии ознакомления с поперечной силой и изгибающим моментом обозначения Q и М снабжаются соответствующими индексами в дальнейшем при построении эпюр от этих индексов можно будет отказаться.  [c.121]

При прямом изгибе бруса в упругой стадии его работы нормальные напряжения распределены по высоте поперечного сечения (рис. 11-19, а) по линейному закону. Эти напряжения равны нулю на нейтральной оси, которая проходит через центр тяжести сечения, и достигают максимальной величины в точках, наиболее удаленных от нейтральной оси (рис. 11-19, б).  [c.290]

На рис. 30 приведена кривая ползучести при изгибе для однонаправленного композита. В противоположность испытаниям на растяжение [66] изгибные испытания показывают ускоренную третью стадию ползучести перед разрушением. Кривые длительной прочности для композитов с 40%- и 60%-ным объемным содержанием волокон приведены на рис. 31, а некоторые дополнительные результаты для трансверсальных и перекрестно армированных композитов можно найти в [40]. Эти результаты не сопровождаются теоретическим анализом, они только указывают тип разрушения, который может возникнуть в такой бороалюминиевой композиции при одинаковых условиях нагружения.  [c.308]

По-видимому, имеется связь между температурой термического разрушения и радиационной стойкостью. Возможность свободного вращения и изгиба метильной группы алифатического амина обусловливает получение литых смол с низкой температурой термического разрушения и, наоборот, устойчивость ароматических отвердителей обусловливает получение материалов с высокой температурой термического разрушения и с повышенной радиационной стойкостью [1а]. Увеличение предела прочности при изгибе, наблюдаемое в некоторых системах на начальной стадии облучения, но-видимому, связано с реакцией остаточных этоксильных групп под влиянием излучения.  [c.60]


При протяжке трубы — заготовки через рогообразный сердечник можно выделить три стадии I — от начала захода трубы — заготовки на хвостовик сердечника до перемещения ее к месту начала увеличения диаметра сердечника, т. е. к месту начала деформации. На этой стадии температуру заготовки поддерживают в пределах 200—400 и даже 600 °С II — пребывание трубы-заготовки в зоне пластической деформации. Стенка заготовки с наружной стороны изгибается по образующей сердечника, сохраняя первоначальную толщину (нейтральная ось изгиба) температура на этой стадии возрастает от 780—820 до 820— 870 °С внутренняя стенка заготовки испытывает деформацию сжатия в направлении, параллельном оси сердечника, и деформацию растяжения по окрул<ности. Боковые стенки изгибаемой трубы — заготовки испытывают деформации сжатия (вдоль оси сердечника) и растял ения (перпендикулярно его оси). При изгибе на вогнутой стороне температуры на начальном участке принимают 700—780, в середине 780—800 и в конце 800—840 °С. Интервал температур выбирают с учетом диаметра заготовки.  [c.289]

Выше указывалось, что для рабочих лопаток турбин существуют, по крайней мере, два источника возмущения. Первый обусловлен неравномерностью парового потока по окружности ступени из-за неодина-ковости выходных сечений направляющей решетки, угла установки лопаток, шагов, толщин выходных кромок, стыков горизонтального разъема диафрагм и др. Частота гармоник возмущающего усилия при этом кратна числу оборотов ротора турбины. Второй источник возмущения обусловлен кромками сопл. Возмущающая сила при этом кратна числу П2. Спектр частот колебаний лопаток и их пакетов весьма широк. Вместе с тем, далеко не все формы колебаний и не все гармоники возмущающих сил представляют опасность. Обычно тангенциальные колебания при изгибе выше третьего тона даже в резонансе с частотой возмущающих сил происходят с такой малой амплитудой, что опасности не представляют. То же относится к аксиальным, крутильным и изгибно-крутильным колебаниям. Вместе с тем, для значительной части спектра резонанс с частотой возмущающих сил опасен и необходимо принять меры для вибрационной отстройки лопаток как в стадии проектирования проточной части, так и в стадии ее доводки, монтажа и эксплуатации.  [c.178]

Испытания на длительную прочность при изгибе образцов, имитирующих реальные сварные стыки, являясь переходным видом испытаний от лабораторных к испрятаниям конструктивной прочности, позволяют оценить конструктивные и технологические особенности изделия и влияние большинства факторов характерных для эксплуатации. В то же время получаемые с помощью этих испытаний результаты носят в первую очередь качественный характер и позволяют ответить на вопрос о возможности или невозможности локальных разрушений, не оценивая их интенсивности. Наблюдаемое при появлении этих разрушений снижение длительной прочности на 15—20% является относительно небольшим и не может служить количественной характеристикой склонности сварных соединений к локальным разрушениям. В связи с этим указанные испытания следует использовать в качестве конечной качественной стадии оценки ранее полученных результатов лабораторных количественных методов с учетом конструктивных и технологических факторов реальных сварных соединений.  [c.139]

Когда сжимающая нагрузка является ударной, величина разрушающей нагрузки увеличивается вследствие действия на стержень инерционных сил. Бэрли и Миле показали, что время образования пластических шарниров уменьшается с ростом скорости удара и что деформация, имеющаяся до образования шарниров, составляет только малую долю суммарной деформации [11. Было установлено, что поглощение энергии на стадии пластической деформации не зависит от скорости удара, поэтому можно пользоваться показателями, полученными при статическом разрушении. Последние исследования показали, что разрушение тонкостенных труб при изгибе в большей мере соответствует случаям переворачивания и бокового удара.  [c.129]

Характерным представителем так называемых сверхбыстрорежущих сталей, обладающих наибольщей твердостью, является молибденовая быстрорежущая сталь марки R11 (2—10—1—8) с по-выщенным содержанием углерода и пониженным содержанием ванадия. К этой группе также относятся вольфрамовые и вольфрамомолибденовые быстрорежущие стали с повыщенным содержанием углерода и кобальта. Твердость этих быстрорежущих стадей составляет HR 69—70 (см. рис. 192), правда, она достигается только за счет некоторого увеличения зерна. В случае, когда величина зерна и вязкость являются еще приемлемыми, твердость составляет HR 66—68. Повышение температуры закалки, приводящее к увеличению твердости, вызывает уменьшение предела прочности при изгибе и уменьшение ударной вязкости, что в небольшой степени можно компенсировать повышением температуры отпуска (табл. 100). Такие быстрорежущие стали большой твердости с малым содержанием ванадия более пригодны для шлифования, чем стали, высоколегированные ванадием, но несколько хуже, чем сталь марки R3. В отожженном состоянии они труднее обрабатываются и резанием, и давлением, так как более тверды. К сожалению, они обладают значительной склонностью к обезуглероживанию, поэтому условиям термической обработки следует уделять особое внимание. Объемные деформации при закалке некоторых быстрорежущих сталей могут быть довольно значительными и это следует принимать во внимание  [c.234]

Таким образом, можно предложить метод расчета для нежестких аэродромных покрытий, работающих в стадии обратимых деформаций. В качестве расчетной схемы здесь используется модель слоистого упругого полупространства. За критерии предельного состояния принимают достижение местного предельного равновесия по сдвигу в подстилающем грунте и возникновение предельно допустимых растягивающих напряжений при изгибе в монолитных слоях конструкции покрытия [135].  [c.366]

Рис. 178 иллюстрирует соотношения средних неупругих деформаций на стадии стабилизации неупругого де- формирования при изгибе и действительных неупругих деформаций AeJJ в зависимости от числа циклов до разрушения.  [c.256]

Поэтому испытания на изгиб с определением характеристик стадии разрушения (предел прочности при изгибе и максимальная стрела прогиба) применяются преждс-всего для малопластичных при растяжении материалов (чугунов, инструментальных сталей). В этом случае предел прочности подсчитывают по обычной формуле  [c.26]

Детали машин и измерительный инструмент. Основными материалами для изготовления деталей машин и механизмов из металлокерамики служат железо, сталь, медь, бронза, латунь, алюминий. В зависимости от требований к механическим свойствам металлокерамические детали можно изготовлять малопористыми (Я< 10 / 0> 0,9) или средней пористости (10—20%) в последнем случае уменьшение веса деталей используется для облегчения конструкций. Применение металлокерамики особенно благоприятно при массовом производстве небольших фасонных изделий типа шестерен, колец, втулок, кулачков, шайб, эксцентриков, поршней, храповиков, рычагов, блоков, ступиц, курков, обойм и т. д. С этой точки зрения весьма перспективно находящееся в стадии разработки применение железокерамических газоуплотнительных поршневых колец для двигателей внутреннего сгорания. Такие кольца с перлитной структурой имеют модуль упругости 1,3—1,5 10 кГ1мм , предел прочности при изгибе 65—80 кГ мм , сохраняют необходимую упругость вплоть до 450°  [c.1496]


Наиболее напряженной является первая стадия вытяжки, при которой во фланце заготовки возникавт следующие напряжения растяжение в радиальном направлении, сжатие в тангенциальном направлении, напряжения от трения, возникающего мевду заготовкой, матрицей и прижимом, напряжения от изгиба на закругленных ребрах матрицы и пуансона.  [c.18]

Для определения прочности при статических HaqjysKax образцы испытывают на растяжение, сжатие, изгиб и кручение. Испытание на растяжение - самый распространенный и экономичный вид испытаний, потому что он дает хорошо воспроизводящиеся характеристики, имеющие четкий физический смысл и воспроизводит условия нагружения металла аппарата, работающего под внутренним давлением. Однородное одноосное напряженное состояние, реализуемое на начальных стадиях испытания, позволяет прямо сравнивать достигнутые напряжения с расчетными напряжениями в конструкциях.  [c.278]


Смотреть страницы где упоминается термин Стадии при изгибе : [c.268]    [c.384]    [c.238]    [c.178]    [c.87]    [c.184]    [c.277]    [c.91]    [c.113]    [c.140]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.9 ]



ПОИСК



Изн стадии



© 2025 Mash-xxl.info Реклама на сайте