Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мощность Регулирование скорости

Увеличение мощности и быстроходности современных машин и усложнение их функций предъявляет все более жесткие требования к передаточным механизмам, установленным между двигательным и исполнительным органами машины, К основным функциям передаточных механизмов относятся передача и преобразование движения, изменение и регулирование скорости, распределение потоков мощности между различными исполнительными органами данной машины, пуск, останов и реверсирование движения. Эти функции должны выполняться безотказно с заданной степенью точности и с заданной производительностью в течение определенного промежутка времени При этом механизм должен иметь минимальные габариты, быть экономичным и безопасным в эксплуатации. В ряде случаев к передаточным механизмам могут предъявляться и другие требования — надежная работа в загрязненной или агрессивной среде, при высоких или весьма низких температурах и т. д.  [c.232]


Мощность Р, которую может передавать широкий ремень при симметричном регулировании скорости в реальных условиях по ГОСТ 24848.3 -81  [c.303]

Электромагнитные вихревые муфты имеют одну полумуфту в виде кольцевого электромагнита и вторую — в виде кольцевого магнитопровода. Муфты позволяют регулировать (понижать) скорость. Так как регулирование скорости муфтами происходит с потерей мощности, то их преимущественно применяют для машин малой мощности и машин с вентиляторной характеристикой, у которых момент возрастает пропорционально квадрату частоты вращения и при малых частотах очень мал.  [c.459]

Для машин значительной мощности муфты применяют для регулирования скорости в малом диапазоне частот вращения.  [c.459]

Недостатки — трудности регулирования скорости, в особенности двигателей с к. з. ротором значительные потери энергии при регулировании скорости необходимость в реактивной мощности, потребляемом из сети ограниченные пусковые возможности двигателей с к.з. ротором большая чувствительность к колебаниям напряжения в сети, так как вращающий момент двигателя приданной частоте вращения пропорционален квадрату напряжения сети.  [c.119]

Вторая группа — движение выходного звена происходит без регулирования скорости, но с четкой фиксацией его положения гидрозамками. Так работают устройства для ориентации корпуса добычного комбайна в пространстве и регулирования его исполнительного органа по мощности пласта, распора проходческого комбайна в выработке, гидравлические стойки крепи и др.  [c.207]

Дроссели (рис. 228) предназначены для регулирования расхода жидкости посредством изменения величины проходного сечения щели. Дроссельное регулирование гидроприводов — один из наиболее распространенных способов регулирования скорости гидродвигателей. малой мощности.  [c.355]

Как уже указывалось, зависимости момента и мощности гидротормоза от скорости, размеров и плотности жидкости аналогичны зависимостям для лопастных гидромашин. Режим работы гидротормозов соответствует скольжению, равному единице. Следовательно, у характеристики гидромуфты ось абсцисс в режиме гидротормоза при заданных скорости ротора насоса и регулировании является линией изменения тормозного момента. В процессе работы и испытаний скорость ротора гидротормоза изменяется. Тормозные моменты будут меняться пропорционально квадрату скорости, а мощности — кубу скорости. Тормозные характеристики существенно уменьшаются с уменьшением скорости ротора. Тормозной момент при заданной скорости изменяется регулированием.  [c.290]


Вторая группа — перемещение поршня происходит без регулирования скорости, но с четкой его фиксацией в цилиндре. По этой схеме работают устройства для перемещения опорных лыж и регулирования исполнительного органа по мощности пласта в угольных комбайнах, распора проходческого комбайна в выработке при его перемещении и т. д.  [c.212]

Рассмотрим еще один пример автоматического регулирования. На рис. 205, а показана схема регулирования скорости гидротурбины I малой мощности, о которой соединен электрический  [c.343]

Фрикционные передачи применяют в кинематических цепях приборов для обеспечения плавности движения, бесшумности и безударного включения. Фрикционные вариаторы применяют для обеспечения бесступенчатого регулирования скорости в станкостроении, текстильных, бумагоделательных и других машинах. Передаваемые мощности обычно составляют до 10 кВт. При больших мощностях трудно обеспечить необходимое усилие прижатия катков.  [c.311]

Плавное бесступенчатое регулирование скорости подачи выемочной машины с помощью объемной гидравлической передачи обеспечило более полное использование мощности электродвигателя и позволило автоматизировать режимы работы механизма подачи.  [c.6]

Электроконтактные регуляторы электродвигателей компактны, надежны в работе, обеспечивают высокую точность поддержания скорости (у регуляторов радиального действия). К недостаткам этих регуляторов относится сложность конструкции, невозможность изменять скорость в процессе работы. Они применяются для регулирования скорости электродвигателей небольшой мощности — от нескольких ватт до нескольких киловатт.  [c.369]

Регулирование скорости вращения вала гидромотора осуществляется дросселем, установленным последовательно в напорной гидролинии (рис. 13.1, а). Определить минимальную частоту вращения вала гидромотора из условия допустимой потери мощности в гидроклапане Л/кл = 1,5 кВт, установленном параллельно насосу, если давление нагнетания насоса р == 6,3 МПа, его подача Q = 30 л/мин,  [c.179]

Тормозные регуляторы. При регулировании скорости движения с помощью тормозных регуляторов избыточная энергия двигателя затрачивается на преодоление механического, жидкостного или воздушного трения в регуляторе. Тормозные регуляторы применяются в приборах и аппаратах, потребляющих небольшую мощность, например в телеграфных аппаратах, патефонах и других приборах точной механики.  [c.186]

Гидравлические и пневматические системы имеют целый ряд преимуществ перед механическими быстроту срабатывания (пневматические системы) возможность передачи значительных мощностей по трубопроводам небольших диаметров и получения больших выходных усилий простоту, компактность и малую металлоемкость конструкций систем возможность использования нормализованных покупных узлов и деталей при проектировании и изготовлении систем плавность хода рабочих органов (гидравлические системы) простоту управления работой механизмов и обеспечение бесступенчатого регулирования скорости движения исполнительных органов возможность размещения систем как в машине, так и за ее пределами надежность и долговечность систем.  [c.26]

На рис. 0. 1, (Э показаны характеристики двигателя постоянного тока с независимым возбуждением. Скорость регулируют путем изменения возбуждения генератора, питающего цепь якоря двигателя. Эта система, названная системой Г—Д (генератор— двигатель), допускает очень тонкое регулирование скорости и находит наибольшее применение там, где, с одной стороны, устанавливают двигатели очень большой мощности, а с другой — предъявляют особые требования в отношении плавного изменения скорости вращения. Мощность двигателей системы Г—Д на крупных шахтных подъемных установках достигает 4 000 кет. В то же время на современных металлорежущих станках, где устанавливают двигатели сравнительно малой мощности, в ряде случаев также применяют систему Г—Д.  [c.18]


Машины, потребляющие сравнительно небольшую мощность (обычно в пределах 100—120 кет) и не требующие по технологии выполняемых операций регулирования скорости вращения двигателя, обычно приводятся асинхронными двигателями с коротко-  [c.36]

Червячно-винтовая передача необратима. Выходная жесткость передачи возрастает с увеличением передаточного отношения. Однако его увеличение влечет за собой повышение кинематических погрешностей (неравномерность скорости) и препятствует расширению диапазона регулирования скоростей движения активного захвата. Поэтому обычно диапазон регулирования скоростей в машинах с механическим возбуждением находится в пределах 3—4 порядков и в исключительных случаях достигает 5—6 порядков. Для расширения диапазонов регулирования непосредственно приводом используют следящие гидропередачи. Наилучшими регулировочными параметрами (идеально жесткая скоростная характеристика в пределах мощности) обладают синхронные следящие гидропередачи.  [c.175]

Расчеты, выполненные по формуле (4), показывают, что при отношении uju-i < 0,5 и изменении os ф от 0,7 до 1 ошибка в определении мощности не превышает 10 %, а при изменении os ф в диапазоне 0,9 и 0,8 при том же наибольшем значении uju ошибка составит 5%. Ошибка в 5% в определении мощности при 2% полной неравномерности регулирования даст остаточную неравномерность регулирования скорости 0,01%. Если os ф уменьшается с уменьшением нагрузки или остается неизменным, то подбором характеристики пружины регулятора и Профилированием дроссельных устройств ошибка может быть сведена практически к нулю.  [c.213]

В некоторых конструкциях катушка реле Р питается от специального тахометрического генератора, соединённого механически с валом дизель-генератора. При этом принцип работы схемы не изменяется, но точность регулирования скорости вращения повышается. Схема обеспечивает высокую точность регулирования, но применима лишь при малых мощностях генератора, так как с ростом мощности увеличиваются размеры контакторов К1 и К2 и возникают затруднения в обеспечении быстрой вибрации их. Недостаток схемы — износ вибрирующих контактов и необходимость тщательного ухода за ними.  [c.579]

Ионный электропривод постоянного тока и его механические характеристики. Электропривод этого типа состоит из ионных выпрямляющих аппаратов и двигателя постоянного тока. Для выпрямления переменного тока при больших мощностях двигателей используются ртутные выпрямители с регулируемой сеткой, при меньших мощностях — тиратроны (стеклянные или металлические) и игнитроны. Подводимое к двигателю напряжение ионных аппаратов можно регулировать в широких пределах, изменяя момент зажигания игнитронов посредством подачи соответствующих потенциалов на сетки ртутных выпрямителей или тиратронов. Этим создаётся возможность производить пуск и широко регулировать скорость так же, как и в системе Леонарда. Пределы регулирования скорости двигателя — от 1 20 и выше.  [c.13]

Для режима регулирования скорости а) пределы регулирования скорости б) число желательных ступеней скорости в) рабочие и заправочные скорости и длительность работы при этих скоростях г) способ установки отдельных ступеней скорости—до производственного процесса и во время него д) желательный характер регулирования скорости е) закон изменения потребной от двигателя мощности при изменении скорости.  [c.48]

Для прокатных станов современного типа применяется электрический двигатель переменного или постоянного тока. В тех случаях, когда не требуется регулирования скорости прокатки, как правило, применяются электродвигатели переменного тока синхронные при работе без маховика и асинхронные при работе с маховиком или когда мощность двигателя невелика. Электродвигатели постоянного тока устанавливаются лишь тогда, когда необходимо регулировать скорость прокатки.  [c.850]

Регулировка в пределах от 1 2 до 1 4 производится обычно ослаблением поля двигателя. При регулировке в более широких пределах (выше 1 4) необходимо применять управление по Леонарду, при котором регулирование скорости ниже номинала обычно производится при постоянном моменте (регулировка напряжением), а регулирование выше основной скорости—при постоянной мощности и пониженных моментах (путём ослабления ПОЛЛ двигателя). В новейших установках встречается также регулировка скорости выше номинала путём повышения напряжения против нормального. В частности, для двигателей 220 в типа КПД завод Динамо допускает повышение напряжения до 440 в (регулировка 1 2),  [c.947]

Приводы малой и средней мощностей, требующие плавного регулирования скорости  [c.147]

Приводы малой и средней мощностей, требующие плавного регулирования скорости. Находит применение главным образом в шлифовальных станках  [c.147]

На фиг, 1 указаны способы осуществления подачи, применяющиеся в сверлильных станках. Наиболее распространены подача шпинделя с помощью шестерни и рейки (фиг. 1,в), кулачковая подача (фиг. 1,г, д, е) в специальных станках малой и средней мощности, гидравлическая подача (фиг. 1, ж) в станках средней и большой мощности. Пневматический привод в сочетании с гидравлическим регулированием скорости подачи (фиг. 1,з) применяется в малых сверлильных станках с автоматическим циклом работы.  [c.353]

Узел трения находится в герметически закрываемой камере. Специальное уплотнительное устройство 5 герметизирует выход из камеры вращающегося вала 6, скорость вращения которого измеряется тахометром. Вал приводится во вращение через клиноременную передачу со сменными шкивами от гидромотора, который питается маслом из гидронасоса. Регулирование скорости подачи масла позволяет нужным образом изменять скорость вращения вала машины трения. Гидронасос работает от асинхронного электродвигателя 7 мощностью 1,7 кет. Вместо гидропривода с успехом может быть использован электропривод.  [c.158]


Для привода механизмов с длительным режимом работы, не требующих регулирования скорости, все чаще применяются синхронные двигатели, которые строятся в диапазоне мощностей от нескольких десятков до нескольких тысяч киловатт. Двигатели небольших мощностей строятся на напряжения 220, 380, 500 в, больших мощностей—на 3, 6, 10 кв.  [c.441]

Двигатели постоянного тока параллельного возбуждения обладают весьма ценным качеством электрического регулирования скорости вверх от номинальной в пределах до 1 4 без дополнительных потерь. Допустимая мощность, развиваемая при таком регулировании, остается примерно постоянной, т. е, момент на валу двигателя при увеличении скорости соответственно падает.  [c.442]

Со ступсн4латым регулированием скорости не свыше 6 1 и не слишком частыми пуск ами Асинхронные электродвигатели с к. 3. ротором и переключением числа полюсов Металлорежущие станки малой мощности лифты со скоростью дви жения до 1 м/с  [c.125]

Во многих отраслях машиностроения широко применяется гидравлический привод. Самолеты, автомобили, тракторы, станки, экскаваторы — вот тот далеко не полный перетень машин, в которых широко используется гидравлический привод. Эти машины, их работу мы можем увидеть в нашей повседневной жизни. Но есть определенная категория машин, работа которых видна ограниченному кругу обслуживающего персонала. Это горные машины, работающие на глубине от десятков до сотен метров от поверхности земли. Сложность работы в подземных условиях наложила отпечаток на конструкцию применяемых там машин. Достоинства гидропривода — малые размеры и большая передаваемая мощность, относительно малый вес, быстродействие, бесступенчатое регулирование скоростей и прочие — обеспечили ему широкое применение в горных машинах.  [c.5]

Фригщионное колесо Д4 соединено с колесом 1 дифференциала через коническую передачу с передаточным отношением, равным единице, а колесо Дз—непосредственно с колесом 3. Соединение бесступенчатой передачи с дифференциалом может иметь две цели 1) увеличение диапазона регулирования скоростей и 2) уменьшение мощности бесступенчатой передачи по сравнению с мощностью всей передачи.  [c.474]

Среди разнообразных способов регулирования скорости вращения двигателей переменного тока для установок больших мощностей особо выделяется применение асинхронных вентильных каскадов. Первая промышленная установка с вентильным каскадом была осуществлена в 1948 г. ВЭИ для привода прокатного стана на заводе Красный Октябрь в Волгограде. Позднее вентильные каскады были установлены на Челябинском металлургическом комбинате, на Закавказском металлургическом заводе (1961 г.) и др. В 1965 г. асинхронный вентильный каскад с улучшенными свойствами регулирования был установлен на шахте № 42 Капитальная треста Копейскуголь для подъемной машины.  [c.123]

Ивахненко А. Г. Автоматическое регулирование скорости асинхронных двигателей небольшой мощности. Киев, Изд-во АН УССР, 1953.  [c.285]

Вариаторы скорости с клинчатыми ремнями и раздвижными шкивами, составленными из дисков, получили широкое применение в промышленности, так как в большинстве случаев они просты по конструкции, бесшумно работают, не требуют большого первоначального натяжения ремня, надежны в работе, легко и просто (на ходу) во время работы вариатора регулируется скорость ведомого вала. Большое разнообразие существующих конструкций шкивов, различие сочетания сдвоенных вариаторов скорости, а также сочетания клиноремеппого вариатора с различными схемами зубчатых -передач позволяют легко выбрать наиболее рациональную схему в соответствии с заданной мощностью и необходимым диапазоном регулирования скорости.  [c.317]

Рассмотрим решение этих задач на примере эскизного проектирования многоскоростного зубчатого привода станка (МЗПС) с механическим регулированием скорости, состоящего из односкоростного электродвигателя переменного тока и шестеренной коробки скоростей (этот вариант рекомендован ЭНИМСом как основной для станков средних размеров с мощностью до 100 кВт и вращательным главным движением [119]).  [c.71]

Далее в зависимости от требований, касающихся регулирования скорости, частоты пуска, плавности пуска и торможения, минимальных скоростей, перегрузочных моментов, а иногда и в зависимости от условий окружающей среды, намечаются род тока электропривода (трёхфазный или постоянный) и тип двигателя, наиболее подходящий по его механическим характеристикам, пусковым и регулировочным свойствам. При этом учитываются необходимые мощности электродвигателей.  [c.3]

Выбор рода тока для электроприводов. На районных электрических станциях энергия генерируется в форме переменного тока и на промышленные предприятия подаётся трёхфазный ток. Поэтому во всех случаях, где применение двигателей постоянного тока не вызывается производственной необходимостью, следует устанавливать электродвигатели трёхфазного тока. Потребность в двигателях постоянного тока может возникать I) при широком и плавном регулировании скорости, 2) при большом числе пусков в час и вообще при напряжённом повторно-кратковременном режиме 3) при работе электроприводов по специальному графику скорости, пути 4) при необходимости в особой плавности пуска и торможении, перехода от одного рабочего процесса к другому 5) при необходимости кроме основных, рабочих, получить и заправочные скорости механизмов. Краткое сопоставление различных электрических типов электродвигателей в отношении регулирования скорости дано в табл. 4, из которой видно, что во всех тех случаях, где требуется плавное регулирование скорости в пределах 1 3 и выше, наиболее целесообразно применять двигатели постоянного тока или систему Леонарда, а в малых мощностях электронноионный привод. Последний в эксплоатационном отношении достаточно не изучен. При ступенчатом регулировании до 1 4 преимущественно при малых мощностях (особенно в металлорежущих станках) могут быть использованы короткозамкнутые асинхронные двигатели с переключением полюсов. Коллекторные двигатели переменного тока в указанных пределах экономичны в основном лишь при установке  [c.20]

Для привода прессов малых мощностей часто применяют лопастные насосы с давлением до 60 кг1сА . Так как лопастные насосы дают постоянную подачу масла, регулирование скорости движения поршня осуществляется дроссельным клапаном.  [c.492]

Область применения и эксплуатационные свойства синхронных двигателей. Синхронные двигатели ири. 1е-ияются для приводов, не требующи.х регулирования скорости, как, например, для привода насосов, вентиляторов, компрессоров, нерегулируемых прокатных станов, в преобразовательных установках (двигатель-генераторы) и т. д. Синхронный двигатель является рентабельным при. мощностях примерно 70 — 100 кет и выше.  [c.408]

Основным методом расчета двигателя по нагреву является метод эквивалентного тока. Если при всех условиях работы данного графика мощность или момент пропорциональны току, могут быть использованы также методы эквивалентной мощности или момента. Метод эквивалентного момента не пригоден для асинхронных электродвигателей с короткоза.мкнутым ротором при частых пусках, для двигателей постоянно1 о тока параллельного возбуждения с регулированием скорости путем ослабления магнитного потока, а также для двигателей постоянного тока последовательного возбуждения.  [c.428]



Смотреть страницы где упоминается термин Мощность Регулирование скорости : [c.211]    [c.119]    [c.318]    [c.323]    [c.533]    [c.140]    [c.583]    [c.412]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.532 ]



ПОИСК



Механизм регулирования скорости мощности паровой турбины

Регулирование мощности

Регулирование скорости

Скорость мощности

Способы регулирования мощности,локомотива и скорости движения поезда. Автоматизация процессов управления



© 2025 Mash-xxl.info Реклама на сайте