Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние Определение никеля

Высокая стойкость циркония в деаэрированной горячей воде и паре представляет особую ценность при использовании в ядер-ной энергетике. Металл или его сплавы, как правило, заметно не разрушаются в течение длительного времени при температурах ниже 425 °С. Характерно, что скорость коррозии невелика в некоторый начальный период. Однако после определенной продолжительности контакта (от минут до нескольких лет — в зависимости от температуры) скорость коррозии резко возрастает. Как отмечают, это явление наблюдается на чистом и содержащем примеси цирконии после того, как потери металла достигают 3,5— 5,0 г/м . Аналогичное повторное ускорение окисления может происходить при еще больших потерях металла [55]. Если цирконий содержит примеси азота (>0,005 %) или углерода (>0,04 % то эти процессы протекают при более низких температурах [56 Негативное влияние азота ослабляют, легируя металл 1,5—2,5 % олова и уменьшая содержание железа, никеля и хрома. Такие сплавы называют циркалоями (см. выше).  [c.380]


Соответствие коррозионно-электрохимических свойств индивидуальных железа и хрома, с одной стороны, и их сплавов, с другой, проявляется и во влиянии окислительных добавок на кинетику растворения этих металлов. Действительно, в противоположность растворению активного никеля [58], растворение хрома и железа в серной кислоте (при постоянном потенциале) может в определенных условиях тормозиться под действием кислородсодержащих окислителей (перекиси водорода, хромата, нитрата 148, 59-60]. Аналогичное явление для железа может иметь место и в нейтральных растворах, что было показано, например, для органических хроматов [ 62] и бихромата калия[63].  [c.13]

Наличие скачков на R-кривых и на диаграммах нагрузка — смещение у никелевых сталей является предметом для обсуждения. Эти скачки представляют собой быстрый рост трещины с последующей его остановкой. Остановки могут быть связаны с характеристиками вязкости материала, но могут быть также результатом падения приложенной нагрузки из-за жесткости испытательной машины. Результаты определения вязкости разрушения, полученные в настоящей работе, дают более полную характеристику свойств материала и призваны помочь при выборе материала в каждом конкретном случае его применения. Проведенные испытания показывают, что работоспособность сварной конструкции, изготовленной из сталей, легированных никелем, зависит от свойств зоны термического влияния. Это необходимо учитывать наряду с расчетными, технологическими и экономическими факторами при окончательном выборе материала.  [c.219]

Высокая химическая и коррозионная стойкость алмаза даже смесь соляной и азотной кислот ( царская водка ) не оказывает на него никакого влияния. Однако алмаз растворяется в расплавах щелочей, селитрах и соде. Главной же особенностью алмаза, как модификации углерода, является его химическое сродство к железу, никелю и некоторым другим металлам. Это свойство накладывает определенное ограничение на применение алмаза для обработки сталей при нагреве до 750—800 G начинает проявляться взаимодействие алмаза со сталью, развиваются процессы диффузии, в результате чего поверхность алмаза повреждается. Вопросы указанного взаимодействия изуч ены пока недостаточно, вместе с тем, практика подтверждает высокую эффективность применения алмазов при шлифовании.  [c.57]

Коррозионной усталости в определенных условиях подвержены практически все конструкционные сплавы на основе железа, алюминия, магния, меди, никеля, титана и других металлов. Интенсивность влияния коррозионной среды на сопротивление усталости определяется ее агрессивностью, структурным состоянием металла, его дефектностью, состоянием поверхности изделий, их геометрией и условиями нагружения. Наиболее полно изучена коррозионная усталость углеродистых и легированных сталей и значительно меньше — сплавов титана, алюминия и других металлов.  [c.49]


Все элементы, растворяющиеся в железе, изменяют устойчивость феррита и аустенита. По характеру влияния на полиморфные превращения все элементы могут быть разделены на две группы. Элементы первой группы никель, марганец, медь, азот — расширяют область устойчивого состояния аустенита. При содержании этих легирующих элементов выше определенного количества сталь в интервале от комнатной температуры до перехода в жидкое состояние имеет структуры легированного аустенита. Такая сталь называется аустенитной.  [c.49]

Появление водорода в жидком металле связано главным об-разом с протечкой воды в жидкий натрий через микротрещины в стенках трубок пучка парогенератора. Не исключена возможность диффузии водорода в натрий через стенку трубок из пароводяной фазы как продукта электрохимической и термической коррозии металла стенки в воде при высоких температурах. Предложены физические методы определения водорода, основанные на диффузии его через никелевую или иридиевую перегородку в вакуумную полость и измерении давления в ней [85, 86]. Датчик из иридиевой или никелевой трубки помещают в газовую подушку расширительного бака или непосредственно в поток натрия, В том и другом случае существует линейная зависимость потока водорода через стенку датчика от концентрации его в жидком металле. К сожалению, нет данных о влиянии примесей, находящихся в жидком металле и растворимых в никеле, например лития.  [c.295]

Несоосность — Обозначение на чертежах 9 Неуравновешенность — Определение 914 Никель — Влияние на свойство стального литья 115  [c.965]

Уменьшение низкотемпературной пластичности носит название отпускной хрупкости. Наиболее часто она наблюдается у Сг, Ni, Мо" сталей, используемых для роторов турбин, и Мп, Мо сталей, используемых для корпуса легководных реакторов. Проявляется она в уменьшении ударной вязкости или увеличении температуры хрупкого перехода. Это связано с миграцией определенных элементов, которые занимают соседствующее положение в периодической системе, к границам зерен и проявляется в виде интер-кристаллитного излома. Миграция наблюдается для большинства легирующих элементов, включая углерод, кремний, никель и марганец, но не отмечена для молибдена. Примесные элементы при температуре отпуска находятся в твердом растворе и выделяются по границам зерен при температуре 500° С. Поэтому хрупкости можно избежать при быстром охлаждении стали с температуры отпуска, но это может привести для массивных изделий к появлению высоких, превышающих предел текучести, внутренних напряжений, действие которых может быть более отрицательным, чем сама отпускная хрупкость. Технология ступенчатого охлаждения от температуры отпуска при удачно выбранной температуре ступенек позволяет избежать отпускной хрупкости и в то же время не привести к появлению больших внутренних напряжений. Отпускная хрупкость может быть сведена к минимуму при снижении содержания примесей от 0,01 до 0,001% за счет тщательного выбора скрапа и шлака, а также при использовании очень чистого, например электролитического, железа. Дальнейшее улучшение может быть достигнуто в результате удаления кремния, т. е. при использовании вакуумного раскисления. Трудно расположить элементы в порядке усиления их влияния на отпускную хрупкость, так как некоторые из них используются редко или в таких малых количествах, что их влияние трудно учесть. Проведенные в последние годы исследования позволили получить стали для больших роторов, температура хрупкого перехода которых снижена со 100° до 0°С.  [c.53]

Результаты ряда исследований показывают, что химический состав (особенно наличие хрома и никеля) коррозионно-стойких сталей влияет на активность СМ лишь до определенной массовой доли элементов (10. .. 15 % для хрома и никеля), при превышении которой их влияние на адгезию СМ практически не изменяется. В связи с этим коэффициенты трения для соединений из коррозионно-стойких сталей приблизительно одинаковы.  [c.340]

Все элементы, растворяющиеся в железе, изменяют устойчивость феррита и аустенита. По характеру влияния на полиморфные превращения все элементы могут быть разделены на две группы. Элементы первой группы расширяют область устойчивого состояния аустенита. Они способствуют повышению критической точки Л4 и снижению точки A3. К этой группе относятся никель, марганец, медь, кобальт и азот. На рис. 82, а показана условная диаграмма состояния железа и одного из элементов первой группы. Левая ордината на диаграмме соответствует чистому железу. Содержание элемента, расширяющего область устойчивого аустенита, возрастает слева направо. По диаграмме состояния видно, что при содержании легирующего элемента свыше определенного процента сталь от комнатных температур до линии солидуса имеет структуру аустенита. Такая сталь называется аустенитной. Для придания аустенитной структуры сталь обычно легируют никелем или марганцем.  [c.160]


Наиболее существенное влияние на полиморфизм железа оказывают хром, вольфрам, ванадий, молибден, ниобий, марганец, никель, медь и другие металлы. Они расширяют или сужают область существования у-железа. Например, введение в сталь никеля, марганца и меди понижает температуру точки и повышает температуру точки А , что (при определенном их содержании) расширяет область у-железа от температуры плавления до комнатной (рис. 5.2, а). Такие сплавы представляют собой твердый раствор легирующего элемента в у-же-лезе и относятся к сталям аустенитного класса.  [c.79]

Металлургическая технология относится к высокотемпературным химическим процессам и заключается в многоступенчатом преобразовании исходных шихтовых материалов с определенным химическим составом в готовую продукцию — разнообразные виды сталей, чугу-нов и специальных сплавов с заданными содержанием контролируемых элементов и комплексом свойств при этом уровень потребительских свойств черных металлов зависит от физико-химических характеристик основы (для чугуна и стали — железа, для специальных сплавов — никеля и кобальта) и входящих в их состав элементов, способствующих получению более высоких показателей качества (легирующие элементы) или оказывающих на них отрицательное влияние (вредные примеси).  [c.6]

В некоторых промышленных сортах никеля, содержащих примеси углерода, продолжительное воздействие высоких температур (425—760 °С) может привести к возникновению по границам зерен графита. Такая пленка делает металл в определенных условиях склонным к межкристаллитной коррозии при последующей эксплуатации в средах, к которым никель обычно достаточно стоек, например в едких щелочах. Межкристаллитная коррозия никеля при этом может усиливаться иод влиянием напряжений  [c.175]

Известно, что никелевые стали мартенситного класса, особенно при низком содержании углерода, обладают более высокими вязкостью и твердостью, чем другие стали этого класса. Положительное влияние никеля на эрозионную стойкость перлитной стали проявляется главным образом после закалки и отпуска. Никель, как и хром, при определенном содержании значительно  [c.159]

Отметим в заключение, что химический состав стали оказывает очень мало влияния на коррозию либо вообще не имеет значения. Некоторые исследователи сообщают, что снижение содержания никеля ниже 8% приводит к образованию у стали аустенито-ферритной структуры, и подавляет чувствительность стали к коррозии при механических напряжениях. И, наоборот, повышение содержания никеля уменьшает эту чувствительность. Однако действие никеля определенно сказывается лишь при содержании более 30%. Но в таком случае мы выходим за пределы области нержавеющих сталей в строгом смысле слова.  [c.175]

Результаты этих исследований горячей пластичности жаропрочных сплавов и их сравнение с данными для однофазных никеля и нихрома позволяют сделать заключение O важном влиянии -фазы на СП течение. Вместе с тем выяснение роли 7 -фазы в реализации эффекта СП в жаропрочных никелевых сплавах требует проведения специальных экспериментов для определения связи структурного состояния и свойств сплавов. Следует, однако, отметить ряд методических особенностей при. изучении структуры жаропрочных сплавов, которые не всегда учитываются при проведении экспериментов. Прежде всего, структура сплавов обычно исследуется при комнатной температуре и она может не соответствовать высокотемпературному состоянию. Как известно, при нагреве жаропрочных сплавов происходят значительные фазовые и структурные превращения, связанные с развитием коагуляции и растворения 7 -фазы, а также карбидов. Особенно существенны эти изменения в мелкозернистых материалах. Между тем при охлаждении сплавов с высоких температур необходимо учитывать возможность выпадения -фазы. Во многих жаропрочных сплавах ее выделение удается предотвратить лишь при закалке очень тонких образцов. Все эти особенности поведения -у -фазы должны быть приняты во внимание при выяснении ее роли в обеспечении СПД.  [c.234]

При распаде аустенита в условиях малых степеней переохлаждения возможно образование графита, а также феррито-гра-фитной смеси. Принципиально эти процессы могут развиваться и при протекании превращений в стали, однако тогда на них не обращают особото внимания, поскольку они протекают сравнительно медленно и наблюдаются очень редко. Для чугунов эти процессы имеют практическое значение, так как под влиянием определенных элементов (кремния, никеля и т. п.) и готовых зародышей образование графита и феррито-гра-фитной смеси ускоряется и одновременно интенсифицируется превращение в эвтектоидном интервале температур. При этом могут образоваться весьма своеобразные структуры и, в частности, участки свободного феррита, которые возникают несмотря на то, что средний состав аустенита, как правило, заэвтектоидный. Образованию феррита способствует увеличение содержания кремния в чугуне, так как при этом состав аустенита изменяется в сторону понижения содержания углерода.  [c.623]

Для приближенного определения характера структуры обычно пользуются диаграммой Шеффлера, предварительно подсчитав эквивалеитпые содержания никеля и хрома. На структуру этих сталей оказывает влияние также термообработка, пластическая деформация н другие факторы. По )тому положение фазовых областей на диаграммах состояния определено для немногих систем в виде псевдобинарн1,[х разрезов тройных систем, обычно Fe—Сг—Ni с углеродом.  [c.281]

Влияние несимметричности реакций фарадеевское выпрямление) наблюдается особенно часто при вызываемой переменным током коррозии пассивных металлов (в основном, по определению 1 в гл. 5). Показано, что нержавеющие стали корродируют под действием переменного тока [4], алюминий в разбавленных растворах соли разрушается при 15 А/м на 5 %, а при 100 А/м на 31 % по отношению к разрушениям, вызванным при 100 А/м постоянным током той же силы. Феллер и Рукерт [4] изучали воздействие наложения переменного тока (1 В, 54 Гц) на постоянный на никель в 1 и. H2SO4. Оказалось, что на потенцио-статических поляризационных кривых полностью исчезла пассивная область, а высокая плотность анодного тока сохранялась во всей области положительных потенциалов. Чин и Фу [5] отметили аналогичное поведение мягкой стали в 0,5т N82804 при pH = 7. Плотность пассивирующего тока возрастала с повышением плотности наложенного переменного тока, достигая при плотности тока 2000 А/м и частоте 60 Гц критического значения (отсутствие пассивной области). Они нашли также, что при плотности переменного тока 500 А/м потенциал коррозии снижался на несколько десятых вольта, одновременно в отрицательную сторону сдвигалась и область Фладе-потенциала, но  [c.209]


С целью определения влияния легирования на свойства покрытий, получаемых из синтезированных дисперсных материалов, проведены исследования некоторых экснлуатационных характеристик покрытий системы никель-алюминий-легирующий элемент.  [c.62]

В некоторых работах установлено положительное влияние-предварительной деформации определенной величины на сопротивляемость ползучести [46—50 и др.]. Так, исследованиями М. В. Приданцева и К. А. Ланской [47] на хромомолибдено-ванадиевой стали установлено, что после предварительной деформации растяжением на 10% происходит существенное повышение сопротивляемости ползучести стали. По данным Г. Я. Козырского [49], срок службы образцов никеля существенно повышается, если их предварительно деформировать на  [c.28]

Проводилась обработка поверхности стали в парах хрома и никеля в вакууме. Исследовалось влияние на величину диффузионного слоя времени обработки и плотности пара, в результате изменения которых глубину легированного слоя получали в пределах 40—170 мкм. На основании испытаний свойств стали с диффузионным хромопикепевым споем рекомендованы (в зависимости от условий службы) спои определенной глубины.  [c.245]

Во всех случаях проектирования химической аппаратуры из нержавеющих сталей следует учитывать необходимость проведения термической обработки для некоторых марок сталей в целях повышения коррозионной стойкости, поскольку структурные изменения, происходящие в металле в результате нагрева, например, при штамповке или сварке, как правило, оказывают существенное влияние на его коррозионную стойкость. Следует также учитывать, что сортовой профиль нери<а-веющих сталей заводами черной металлургии поставляется преимущественно термически необработанным. При применении нержавеющих сталей различных марок, в том числе сталей с пониженным содержанием никеля, необходимо строго соблюдать технологию переработки металла уделять большое внимание вопросам сварки сталей (правильности выбора сварочных электродов и соблюдению определенных режимов сварки).  [c.66]

Определение намагниченности насыщения исследованных сталей показало, что этот благоприятный эффект сохраняется и при рекомендованных изменениях состава. Указанное количество аустенита в стали 7ХГ2ВМ определяется преимущественно марганцем при принятом снижении содержания марганца его влияние на аустенит возмещается никелем. "  [c.69]

Выше уже говорилось, что при определенном содержании феррита в аустенитных сталях они становятся более стойкими к коррозионному растрескиванию. Х.Х. Улиг [111,134] отмечает, что аустенитные нержавеющие стали, близкие по своему химическому составу, существенным образом отличаются друг от друга по стойкости к коррозионному растрескиванию вследствие различия в структуре. Так, слабо магнитные и магнитные стали 18-8 не разрушались в процессе 200-часовых испытаний, в то время как немагнитные образцы разрушились за несколько часов. Именно с этой точки зрения следует рассмотреть влияние легирования кремнием на стойкость сталей к коррозионному растрескиванию. Е. Е. Денхард [111,101] указывает, что стойкость к коррозионному растрескиванию у стали 18-12, легированной 4% кремния, улучшается. Сталь 18-8, легированная 2% кремния, немагнитна и разрушается за 15 час. Та же сталь, легированная 1,1—2,7% кремния, слабо магнитна, т. е., очевидно, содержит а-фазу в количестве 5—10%, и не разрушалась по прошествии 250 час испытаний [111,134]. Высокая стойкость к коррозионному растрескиванию стали 18-8С небольшой концентрацией С (менее 0,002—0,004%) и азота (менее0,002—0,004%) [111,134] объясняется тем, что уменьшение содержания этих аустенитообразующих элементов делает сталь двухфазной — с содержанием а-фазы до 10—15% [И 1,123]. С другой стороны, сталь 19-20 с концентрацией менее 0,01% азота и углерода полностью аустенитна и достаточно стойка против коррозионного растрескивания. Та же сталь, но с концентрацией 0,2% углерода, тоже стойка к растрескиванию, но увеличение азота до 0,05% приводит к появлению трещин. Полагают, что в данном случае концентраторами напряжений были нитриды [111,142]. Сталь 18-8, закаленная при температуре 196° С, двухфазна и стойка к растрескиванию, в то время как без этой обработки она разрушалась за 6 час. Увеличение хрома в стали с 8 до 25% при концентрации 20% никеля делает сталь значительно более склонной к коррозионному растрескиванию вследствие уменьшения стабильности аустенита [111,134]. Учитывая изложенное выше, влияние легирующих элементов на коррозионное растрескивание нержавеющей стали  [c.165]

В настоящей работе были получены экспериментальные данные по теплоотдаче при кипении калия под давлением собственных паров в довольно широком интервале изменения параметров, а именно при давлении насыщения р, = 1- -1100 мм рт. ст. и qi=7-10 - 2.4-10 вт/м . Теплоотдача исследовалась на опытных элементах, изготовленных из никеля (гладкая поверхность), армко (гладкая и шероховатая) и нержавеющей стали 1Х18Н9Т (шероховатая). Искусственную шероховатость на теплоотдающую поверхность наносили керном специальной заточки. Впадины имели форму либо узких щелей (поверхность из армко), либо конических углублений (поверхность из нержавеющей стали) (рис. 2). Сопоставление данных по теплоотдаче на поверхностях различной шероховатости при низких и высоких давлениях насыщения обнаружено существенное влияние величины температурного напора А7 =7 , —где — температура теплоотдающей стенки, — температура насыщения, как на условия возникновения пузырькового кипения, так и на устойчивость этого процесса. Первичный анализ полученных экспериментальных данных показал, что наблюдается некоторая закономерность перехода к устойчивому кипению при достижении определенной тепловой нагрузки характерной для данного давления насыщения. Дальнейшая обработка результатов опытов привела к установлению эмпирической зависимости начала перехода от неустойчивого процесса кипения к устойчивому развитому кипению на поверхностях с умеренной шероховатостью  [c.250]

На сплавы, содержащие никель, разрушающее влияние оказывает сернистый газ SO2. Скорость газового потока до определенного предела ускоряет коррозионный процесс. Весьма вредными являются периодические колебания температуры, приводящие к растрескиванию окиспой пленки.  [c.15]

Заводской практикой показано, что па пластичность нержавеющей стали Х18Н10Т при горячей прокатке оказывает большое влияние отношение содержания хрома к содержанию никеля. Для установления этого соотношения были взяты текущие плавки за определенный период и разделены на девять групп в зависилюсти от величины отношения хрома к никелю. Для каждой группы  [c.149]

Влияние активных легирующих металлов на процесс образования пассивирующей пленки отличается От того влияния, которое они оказывают на процесс активного растворения. Хром и титан в сильных средах окисляются при более высоком потенциале, чем железо, кобальт или никель, являющиеся основами сплавов типа металл — металлоид, и при своем охлаждении образуют пассивирующиеся пленки с высокими защитными характеристиками. В сплавах, содержащих хром и титан, пассивация наступает только тогда, когда концентрация хрома и (или) титана в образующейся поверхностной пленке превышает определенную величину. Это подтверждается и результатами анализа химического состава пленки, возникающей на поверхности аморфного сплава Со—Сг—20В при различном содержании хрома.  [c.272]

Однако не следует забывать, что структурная диаграмма Шеффлера имеет статический характер — она не может учесть влияния на микроструктуру шва таких важных факторов, как режимы сварки, и особенно скорости сварки, сечения шва и т. д. Диаграмма не учитывает изменений растворимости отдельных элементов, вовсе не учитывает возможности образования эвтектических со-ставляюш,их в сварном шве при повышенном содержании углерода, кремния, ниобия, бора. Например, судя по диаграмме, повышение содержания углерода в шве, увеличивая эквивалентную концентрацию никеля, должно лишь сместить точку, характеризующую структуру шва, в область стабильного аустенита. Тем не менее, структурная диаграмма Шеффлера дает, несомненно, возможность качественной оценки микроструктуры сварного шва. При определении количества ферритной составляющей ею следует пользоваться с осторожностью.  [c.117]


При сварке аустенитных сталей действие углерода проявляется по-разному, в зависимости от изменения его концентрации, а также композиции шва и содержания в нем легирующих примесей. При повышении содержания углерода в швах типа 18-8 от 0,06—0,08% до 0,12—0,14%, наблюдаемом, например, при сварке в Og, склонность к трещинообразованию может возрасти, причем склонность к трещинам заметно усиливается, если в шве содержится титан, ниобий и другие энергичные карбидообразователи. В этом случае вредное действие углерода связано с появлением по границам кристаллов аустенита легкоплавких карбидных звтектик ледебурит-ного типа. Иными словами, углерод в данных условиях действует так же, как при сварке углеродистых и низколегированных сталей. В связи с этим необходимо указать на недопустимость использования электродной проволоки со следами графитовой смазки на поверхности. Дальнейшее повышение содержания углерода, например до 0,18—0,20%. приводит к резкому усилению трещино-образования. В этом случае вредное влияние углерода усиливается вследствие аустенитизации структуры шва. В известном диапазоне концентраций углерод по своему действию уподобляется никелю — он способствует утолщению межкристаллитных прослоек (аустени-тизация) и снижению температуры их затвердевания. По мере дальнейшего увеличения содержания углерода в шве, по достижении определенной критической концентрации, влияние этого элемента на трещинообразова ние внезапно изменяется. Углерод из возбудителя горячих трещин превращается в средство их устранения [15, 25]. Изменение поведения углерода связано с измельчением структуры и увеличением количества эвтектической жидкости, которая, заполняя промежутки между кристаллами, залечивает горячие трещины.  [c.198]

Добавление к некомплексообразующему нитратному электролиту поверхностно-активных органических веществ (р-нафтола и бензтриазола) увеличивает Е р сплава Agl5Au соответственно на 0,1 и 0,2 В. Закалка данного сплава несколько повыщает, а микролегирование титаном, никелем, кремнием и хромом (0,5 ат.%) — снижает критический потенциал, хотя наблюдаемые изменения невелики и составляют всего - 0,020—0,060 В. Определенное влияние на  [c.167]

С целью обеспечения длительной стойкости высокоазотистого металла против МКК в области повышенных температур было предложено увеличить концентрацию хрою до 22 при параллельном снижении никеля до 6-10 . В настоящей работе исследовали влияние состава высокохромистых сталей с различным содержанием углерода, азота, никеля и молибдена (см.табл.) на их восприимчивость к МКК после определенной температурно-временной обработки.  [c.42]

В работе В. В. Андреевой и Т. П. Степановой [67] изучено влияние анодной и катодной поляризации на рост и разрушение пассивных пленок на нержавеющей стали и ее компонентах — хроме, никеле, молибдене — оптическим поляризационпым мето-дом определения толщины тонких поверхностных пленок.  [c.37]

Первоначально происходит физическая адсорбция молекул кислорода на чистой поверхности металла. Образуются относительно слабые связи, и энергия адсорбционного процесса незначительна, составляя менее 25 кДж/моль (6 ккал/моль). Эти молекулы затем диссоциируют, и атомы становятся значительно более прочно связанными за счет процесса хемосорбции, который протекает при значительно большем выделении энергии, более 209 кДж/моль (60 ккал/моль). С помощью электронографии получено [8] доказательство того, что хемосорбция кислорода связана с движением-определенного числа атомов металла к плоскости, занятой адсорбированными атомами, кислорода. Эти хемосорбированные атомы образуют очень стойкую поверхностную структуру, состоящую из положительных и отрицательных частиц, которая, как установлено некоторыми исследователями, имеет более высокую термодинамическую стойкость, чем трехмерный окисел. Так, например, при нагревании кристаллов никеля почти до точки плавления было обнаружено 18] исчезновение дифракционных картин NiO при сохранении дифракционной картины, присущей адсорбционному слою. Переход монослоя в кристаллический окисел объясняется [71 влиянием второго внешнего слоя хемосорбированных молекул кислорода на изменшйе результирующей энергии Гиббса, вследствие которого окисел становится более стойким, чем монослой.  [c.19]

Для решения проблемы материального оформления этого процесса было исследовано [178] влияние азотной кислоты на коррозионно-электрохимическое поведение сталей в серноазотных кислых смесях, содержащих 10—50 % H2SO4 и до 10 % HNO3. Показано, что при достижении определенной концентрации азотной кислоты потенциал сталей смещается в положительную сторону, происходит пассивация сталей, и скорость коррозии их резко уменьшается. При этом по скорости коррозии аустенито-ферритные стали не уступают высоколегированным сталям с большим содержанием никеля (табл. 18).  [c.203]

В заключение отметим, что собственное атомное разупорядо-чение существенным образом влияет на магнитные свойства ферритов и это обстоятельство надо учитывать, когда надо получить материал со строго повторяющимися параметрами. В качестве технологического приема, стабилизирующего магнитную индукцию и квадратность термостабильной петли гистерезиса, иногда рекомендуют дополнительные к основной термообработке отжиги при температурах 700—800°С в течение времени, достаточном для равновесного перераспределения ионов по подрешеткам (продолжительность отжига зависит от природы феррита 2]). Примером значительного влияния собственно атомного разупорядочения на магнитные свойства является поведение феррита никеля, резко закаленного с высоких температур и обладающего определенной концентрацией ионов Ni + в Л-узлах решетки (при 1300°С в формуле Fe " [Ni Fe2ij ]04 JT = 0,9955). Как показали измерения [142], появление Ni + в тетраэдрических узлах шпинельной структуры приводит к изменению анизотропии кристалла и ширины линии ферромагнитного резонанса.  [c.116]

Ответ. Уже многими учеными было установлено, что водород, находящийся в металле, оказывает очень слабое влияние на коррозию. Нам удалось наблюдать наиболее сильное действие водорода при его проникновении. Очевидно, при прохождении водорода через окисную пленку происходит второй катодный процесс миграция протонов от поверхности к металлу. Момент, когда катодный ток распределяется между этим процессом и процессом прохождения электронов в обратном направлении, пока еще не определен. Как мне кажется, Дралей предположил, что действие железа и никеля в алюминии сводится не только к возникновению образований, но к понижению электронной проводимости окисла, что мешает проникновению водорода, образующегося при катодной поляризации.  [c.200]

В материалах, обладающих достаточно большой, магнито-стрикцией, анализ внутренних напряжений в течение некоторого времени проводился путем исследования намагничивания. Школой Беккера [2] в начале 30-х годов было установлено, что коэрцитивная сила, начальная проницаемость и энергия намагничивания зависят от внутренних напряжений в материале. Эта качественная зависимость использовалась во многих металлографических исследованиях, но до появления в 1956 г. работы Реймера [17] количественная связь была определена недостаточно точно. Реймер измерял внутренние напряжения по уширению рентгеновских интерференций и сравнивал их с величиной напряжений, определенной из измерений энергии намагничивания в чистом никеле полученные значения хорошо совпадали до напряжений 10 кг1мм . Этот результат был достигнут лишь благодаря учету углового распределения констант магнитострикции в отдельных кристаллитах изучаемого материала. (Чтобы получить полное представление о проделанной Реймером работе, следует обратиться к оригинальной публикации.) Из-за многих эффектов, например характера распределения кристаллов, гетерогенности и т. д., которые могут оказывать влияние на энергию намагничивания, при использовании описанного метода необходима большая осторожность. Одна из последних работ на монокристаллах никеля показала хорошее совпадение между величиной приложенного напряжения и значением напряжения, вычисленного по форме кривой зависимости намагниченности в области приближения ее к насыщению. Эти эксперименты показали, что магнитные измерения напряжений дают правильные результаты только для главных направлений кристалла.  [c.303]


Смотреть страницы где упоминается термин Влияние Определение никеля : [c.220]    [c.29]    [c.265]    [c.220]    [c.47]    [c.66]    [c.95]    [c.324]    [c.17]    [c.281]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.100 , c.101 ]



ПОИСК



Влияние Определение

Влияние никеля

Никель



© 2025 Mash-xxl.info Реклама на сайте