Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура и жаропрочность

Сталь 18-8 обладает более высокой длительной прочностью по сравнению со сталями ферритного и мартенситного классов. По химическому составу она находится на границе аустенитной области и при очень малом содержании углерода может иметь фер-ритную составляющую. При изучении влияния углерода на структуру и жаропрочность необходимо учитывать и влияние азота, который, как и углерод, является сильным аустенитообразующим элементом. Поэтому часто при изучении влияния углерода учитывают содержание азота и изменение каких-либо свойств определяют в зависимости от их суммы.  [c.317]


Из-за отсутствия однозначной зависимости между структурой и жаропрочностью изменения в структуре металла, видимой под оптическим микроскопом, при оценке работоспособности труб паропровода после длительной эксплуатации должны учитываться, но сами по себе они не могут служить браковочным критерием. Микроструктура может быть самостоятельным браковочным критерием в тех случаях, когда наблюдаются по границам зерен видимые под оптическим микроскопом цепочки размером более 2 мкм, появившиеся из-за ползучести когда имеются графитные включения в сталях 20 и 16М, превышающие 2 мкм когда наблюдаются недопустимые по техническим условиям на поставку загрязнения неметаллическими включениями или имеют место недопустимые несплошности (трещины, поры и т. п.).  [c.164]

ВЛИЯНИЕ СТРУКТУРЫ и СОСТАВА НА ЖАРОПРОЧНОСТЬ  [c.460]

Термическая обработка сплава нимоник, приводящая его в структурное состояние с максимальной жаропрочностью, заключается в воздушной закалке с 1100—1200°С и отпуске (старении) при 700—750°С в течение 10—16 ч. Максимальная жаропрочность соответствует однородной крупнозернистой структуре и однородным, равномерно распределенным дисперсным образованиям -фазы.  [c.476]

Следовательно, необходимо стремиться получать структуру с кристаллографической ориентацией (001), которая обеспечивает оптимальное сочетание механических и жаропрочных свойств. Следует отметить еще один важный момент, а именно, что сплавы с ориентацией (001) имеют более низкий модуль упругости по сравнению со сплавами, структура которых состоит из равноосных зерен. Тем самым в направленно-кристаллизованных отливках удается снизить уровень термических напряжений, что повышает их выносливость при термоциклировании.  [c.420]

Роль затравки при кристаллизации жидкого гетерогенного расплава заключается в том, что, во-первых, зарождение дендритных структур и расположение их параллельными рядами должно происходить вдоль плоскости (001) и, во-вторых, необходимо создать условия теплоотвода в стартовой зоне, обеспечивающей определенную скорость кристаллизации. Схема процесса затвердевания жаропрочного сплава лопатки с монокристаллической структурой показана на рис. 212.  [c.427]

В книге приводятся данные о механизме пластической деформации, результаты исследований упрочнения и устойчивости состояния аустенитных сплавов после ВТМО, исследований дислокационной структуры и ее влияния на жаропрочность, исследований природы усталости, релаксации напряжений в процессе нагрева и др.  [c.120]


В работе были использованы термически стабильный двухфазный (а- -Р) сплав ВТ-8 и жаропрочный сплав ВТ-18У на основе а-структуры [1]. Образцы сплава ВТ-8 имели форму кубиков (а=10 мм), а сплава ВТ-18У —цилиндрическую ( 9 =10, к=8 мм).  [c.152]

Что касается материалов с покрытиями, то особый интерес методика вызывает потому, что она дает возможность изучения дислокационных изменений в структуре материала при механическом нагружении, которые в настоящее время исследовать иными способами на таких объектах не представляется возможным. Метод внутреннего трения позволяет так ке установить характер влияния покрытия на кинетику дислокаций в приповерхностных слоях основного металла и прогнозировать долговечность, прочность и жаропрочность конструкционных металлов и сплавов с покрытиями [25].  [c.184]

На основе всесторонних материаловедческих исследований в настояшей книге проведен анализ влияния структурных факто-ров на жаропрочность и трещиностойкость теплоустойчивых сталей. Рассмот рены физические процессы, протекающие в металле при восстановлении служебных свойств материалов путем применения повторной термической обработки. Показаны пути повышения точности оценки жаропрочных свойств с учетом напряженного состояния, колебания температур и напряжений, структуры и кратковременных свойств материала. В заключение  [c.3]

Изучение структуры и свойств металла разрушенного диска в зоне обода показало следующее. Кратковременные механические свойства металла диска находились на уровне исходного состояния. В процессе эксплуатации произошло некоторое снижение жаропрочных свойств стали. В исходном состоянии сг. =235 МПа. После эксплуатации в течение 80 тыс. ч предел  [c.46]

Во-первых, в сложных жаропрочных сплавах возможно влияние легирующих элементов, особенностей структуры и типа вторичных фаз на активационные параметры разрушения, а также влияние иных механизмов ползучести (например, диффузионных, дислокационных).  [c.120]

Однако, как отмечалось в гл. 2, жаропрочные стали (и еще в большей степени высоколегированные сплавы) имеют сложные структуру и фазовый состав, количественная оценка влияния которых на активационные параметры разрушения часто представляет трудно разрешимую задачу. В этих случаях, как отмечалось выше, оценку долговечности следует проводить с помощью уравнения типа (3.1).  [c.127]

Аустенитные стали с г. ц. к. структурой. АустенИтнЫе жаропрочные сплавы и нержавеющие стали, обладающие высокой вязкостью разрушения, несмотря на большую, чем у ферритных сталей, стоимость, являются важнейшими материалами для криогенной техники. Однако ряд сплавов  [c.42]

При разра тке жаропрочных сплавов для длительной службы оправдано упрочнение твердого раствора вольфрамом, молибденом и другими элементами.- Кзоморфность кристаллической решетки избыточных фаз (например, Nig (Ti, Al)) с решеткой твердого раствора способствует стабильности структуры и жаропрочных свойств сплава. В зависимости от количества упрочняюш ей фазы в структуре и степени легированности твердого раствора такими элементами, как вольфрам, молиб ден н кобальт, сплавы на никелевой основе условно можно разбить на три категории  [c.161]

Если первоначально соответствие между структурой и жаропрочностью ставилось многими исследователями под сомнение, то в настоящее время имеется уже достаточный опыт лабораторных исследований и эксплуатации, подтверждающий это соответствие все паропроводные трубы, замененные в процессе эксплуатации из-за ускоренной ползучести, имели нерекомендованную структуру.  [c.119]

Попзучесть Изменение структуры при ползучести Диффузионная ползучесть 0 Диффузия и жаропрочность Структура и жаропрочность ф Разрушение при высоких температурах  [c.379]

В структуре отливок углерод присутствует в виде карбида (РезС) и в свободном виде (графит). Механические и жаропрочные свойства его определяются составом карбидов и формой графита (пластинчатый, шаровидный) (рис. 30).  [c.72]


В настоящее время возможности повышения жа юпрочности никелевых сплавов с равноосной структурой за счет их легирования тугоплавкими металлами приближается к пределу. Таким образом, от кристаллического строения лопаток зависят механические свойства и жаропрочность при высоких температурах.  [c.418]

Близость электронного строения (валентные электроны, параметры решетки и атомный радиус) основных элементов (Ni, Сг), определяющая идентичность ОЦК структур, способствует образованию широких и непрерывных областей ОЦК твердых растворов между тугоплавкими металлами 5-го периода - Nb, Мо и 6-го периода Та, W и создают широкие возможности твердорастворенного упрочнения жаропрочного сплава путем взаимного легирования. Введение в сплав с ОЦК структурой небольшого количества рения, равного 3,5 - 4,5% (по массе) с гексагональной структурой, при растворении в ОЦК металлах - Nb, Та, Сг, Мо, W передаст в коллективизированное состояние все валентные электроны, сильно упрочняет межатомные связи и повышает жаропрочность сплава. Таким о )разом, сплав приобретает рениевый эффект , т.е. повышаются пластичность и жаропрочность при высоких температурах.  [c.430]

Таким образом, доказано преимущество лопатки, отлитой с мо-нокристаллической структурой по всем свойствам (механическим и жаропрочным). Следует отметить, что максимальная жа Юпроч-ность (144 ч) наблюдается на лопатке с монокристаллической структурой при 975°С и а = 280 МПа при отклонении направления роста кристаллов от оси Z (ООО на 5°. Жаропрочность сплава  [c.460]

Введение в твердый раствор никеля придает хромистым сталям более высокую химическую стойкость как за счет образования пассивной пленки оксида никеля, так и за счет перевода стали в более гомогенную (и, следовательно, в более коррозионностойкую) аустенитную структуру. Наряду с повышением коррозионвой стойкости никель способстаует повышению пластичности, ударной вязкости, жаростойкости, а при использовании его в качестве основы вместо железа - и жаропрочности сплавов. В качестве аустенитообразующих элементов используют также азот, марганец, медь и кобальт.  [c.14]

Рассмотрен новый метод повышения свойств металлических сплавов, позволяющий улучшить качество и снизить металлоемкость изделий. Изложена теория процесса динамического старения, рассмотрены особенности его применения для различных сплавов, предварительно подвергнутых термической и термомеханической обработкам. Показано влияние динамического старения яя структуру и свойства сплавов различных классов — углеродистых и мартенснт-ностареющих сталей, аустенитных, жаропрочных сплавов, бронз.  [c.24]

Описана теория легирования стали. Показано влияние легирующих элементов на структуру и свойства стали. Приведены технологические особенности обработки легированных сталей. Рассмотрены принципы легирования и термической обработки легированных сталей различного назначения конструкционных, коррозионностойких, теплостойких, жаропрочных, окалиностонких и инструментальных.  [c.26]

Первыми работами, в которых была показана возможность повысить некоторые механические свойства жаропрочных сталей аустенитного класса методом ВМТО, явились исследования В. Д. Садовского с сотрудниками [16, 70, 74—76]. В дальнейшем систематические работы по влиянию ВМТО на структуру и свойства жаропрочных сталей были проведены М. Г. Лозинским, Е. Н. Соколковым и др. на широком круге металлов и сплавов [13, 14, 71, 73, 77—81].  [c.44]

П а ршин А. и. Структура, прочность, пластичность нержавеющих и жаропрочных сталей и сплавов, применяемых в судостроении. Л., 1972.  [c.77]

НИИ [68]. При более высоких температурах свойства композита сопоставимы со свойствами лучших из имеющихся жаропрочных сплавов [1]. Структура и свойства композита Nb — ЫЬгС сохраняются при температурах, близких к эвтектической точке [73].  [c.262]

Влияние холодной гибки на дислокационную структуру и характер накопления повреждений приводит к изменению жаропрочных свойств стали в эксплуатации. Сравнительное определение кратковременных и длительных свойств металла прямых труб и гибов после различных сроков эксплуатации с различной степенью поврежденности, проведенное в [20], показа,зо, что кратковременные механические свойства слабо зависят от длительности эксплуатации. Прочностные свойства, как правило, выше, а пластические ниже, чем на пря.мых участках. Длительная прочность гибов, в металле которых присутствуют поры и цепочки пор по границам зерен, в том числе и разрушенных в эксплуатации, существенно ниже, чем гибов в исходном состоянии и после эксплуатации, в металле которых отсутствуют поры.  [c.27]

Изучение изменений в дислокационной структуре металла отливок из стали 15Х1М1ФЛ показывает, что в эксплуатации протекают разупрочняющие процессы, влияющие на жаропрочные свойства стали. После длительной (более 10 ч) эксплуатации при температуре 540—550 °С в структуре стали наблюдают- ся как зародыщи рекристаллизации, так и свободные от дислокаций рекристаллизованные объемы. Идет процесс роста карбидных астиц с одновременным уменьщением плотности дисперсных карбидов. За счет этих процессов в структуре стали происходят заметные изменения. Рекристаллизация приводит к обособлению феррита в зернах игольчатого сорбита отпуска. Происходит также преобразование фрагментированного сорбита отпуска в бесструктурный. Обособление феррита приводит к возрастанию неоднородности структуры и как следствие — к  [c.38]

К числу важнейших характеристик крепежных материалов следует отнести их способность сопротивляться релаксации напряжений, высокую жаропрочность, высокую трещиностой-кость. Не менее важным также является обеспечение термической стабильности структуры и свойств материалов в условиях эксплуатации, в том числе отсутствие склонности к тепловому охрупчиванию.  [c.41]


Анализ приведенных экспериментальных данных показывает, что с точки зрения жаропрочности целесообразно разделить паропроводные трубы из стали 12Х1МФ на три структурные группы трубы с феррито-сорбитной структурой, трубы с феррито-карбидной структурой и трубы со структурой сорбита отпуска.  [c.49]

Из кинетической концепции процесса разрушения [57] следует, что в основе разрушения лежат последовательные элементарные акты распада межатомных связей. Для сложнолегированных гетерогенных жаропрочных сплавов трудно (если вообще возможно) оценить межатомные силы связи твердого раствора, на которые влияют легирующие элементы и степень легирования. Нельзя также не учитывать возможного влияния на закономерности зарождения и развития повреждений диффузных процессов, особенностей дислокационной структуры и других факторов. В этих условиях оценка параметров уравнений долговечности должна базироваться на методах, позволяющих отразить все особенности развития процесса деформирования и разрушения в пределах анализируемой температурно-силовой области службы металла в интегральной форме.  [c.69]

Одним из эффективных способов использования ресурса жаропрочности сталей перлитного класса может явиться предварительное упрочнение металла труб методом механико-термической обработки (ММТО), основанной на создании стабильной полигональной структуры и упрочнении ферритной составляющей.  [c.248]

В [132, 133] показано, что наряду с восстановлением структуры и служебных свойств стали при восстановительной термообработке возможен эффект упрочнения, который проявляетея в повышении жаропрочности металла.  [c.255]

При изучении влияния термической обработки и деформации на структуру и свойства дисперсноуирочненных сплавов [39] установлено, что жаропрочность пруткового материала определяется суммарной степенью деформации исходных заготовок и температурой рекристаллизационного отжига.  [c.8]


Смотреть страницы где упоминается термин Структура и жаропрочность : [c.393]    [c.264]    [c.109]    [c.95]    [c.245]    [c.270]    [c.297]    [c.263]    [c.334]    [c.92]    [c.203]    [c.263]    [c.264]    [c.196]    [c.245]   
Смотреть главы в:

Строение и свойства металлических сплавов  -> Структура и жаропрочность



ПОИСК



Влияние легирования и структуры на характеристики жаропрочности

Влияние легирования и термической обработки на свойства и структуру сварных соединений из жаропрочных титановых сплавов

Влияние структуры и состава на жаропрочность

Влияние структуры и состава сталей и сплавов на жаропрочность

Влияние структуры и упрочняющей обработки на демпфирующие свойства жаропрочных титановых сплавов

Влияние структуры на жаропрочность пароперегревателей из аустенитных сталей

Влияние структуры на механические свойства жаропрочных титановых сплавов

Жаропрочность

Жаропрочные КЭП

Ковка высоколегированных жаропрочных режима на ударную вязкость 510 Влияние структуры на механические

Регенерация структуры и свойств перлитных жаропрочных сталей путем восстановительной термической обработки

Структура и фазовый состав литейных жаропрочных никелевых сплавов

Технологические факторы, структура и свойства жаропрочных материалов



© 2025 Mash-xxl.info Реклама на сайте