Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хромат органические

Ингибиторы находят широкое применение для защиты металлов от электрохимической коррозии добавка в травильные кислоты органических ингибиторов, небольшие добавки к воде би-хроматов и других пассиваторов, защита металлов от атмосферной коррозии с помощью различных контактных (наносимых на поверхность защищаемых изделий) и летучих (адсорбирующихся на металлах из паровой фазы) ингибиторов коррозии.  [c.351]


Магний обладает высокой коррозионной стойкостью в растворах фторидов, хроматов и бихроматов, устойчив во многих безводных органических жидкостях, в том числе в масле, нефти, бензине и керосине.  [c.122]

Соответствие коррозионно-электрохимических свойств индивидуальных железа и хрома, с одной стороны, и их сплавов, с другой, проявляется и во влиянии окислительных добавок на кинетику растворения этих металлов. Действительно, в противоположность растворению активного никеля [58], растворение хрома и железа в серной кислоте (при постоянном потенциале) может в определенных условиях тормозиться под действием кислородсодержащих окислителей (перекиси водорода, хромата, нитрата 148, 59-60]. Аналогичное явление для железа может иметь место и в нейтральных растворах, что было показано, например, для органических хроматов [ 62] и бихромата калия[63].  [c.13]

Изучено влияние большого числа неорганических и органических ингибиторов коррозии на защитные и физикомеханические свойства лакокрасочных покрытий. Было установлено, что в присутствии органического катиона металл пассивируется гораздо сильнее, чем в присутствии неорганического катиона. Это дало возможность предположить, что органические хроматы, например, в ряде случаев могут в полимерных покрытиях оказаться более эффективными, чем неорганические хроматы, поскольку в защите принимает участие органический катион.  [c.170]

Однако большая продолжительность сушки алкидных покрытий (18—24 ч при нормальной температуре) является недостатком при окраске крупногабаритных изделий. Поэтому в качестве объектов исследования нами были использованы алкидно-стирольные смолы и различные алкидно-нитратцеллюлозные композиции с минимальной продолжительностью высыхания. Как видно из рис. 9.1, покрытия на основе алкидно-стирольной и алкидно-нитратцеллюлозной смолы без ингибитора характеризуются очень низкими защитными свойствами в условиях воздействия влажной атмосферы в течение одного месяца металл под пленкой корродирует. При введении в состав пленок водорастворимых органических хроматов однослойные пленки обеспечивают защиту металла в течение двух лет.  [c.174]

Для выяснения возможности повышения заш,итных свойств органических хроматов за счет сочетания их с фосфатами аналогичных катионов исследовали водные растворы хромата этилендиамина при концентрации ингибитора 1-10 моль/л, т. е. в 100 раз ниже защитной. В этот раствор вводили растворы фосфата этилендиамина различных концентраций и определяли влияние добавок фосфата на скорость коррозии стали. Для сравнения исследовались растворы фосфатов этилендиамина без добавок хромата. Результаты опытов приведены на рис. 9.10. Изменение pH было незначительным (от б до 7) и вряд ли было причиной изменения защитных свойств смесей ингибиторов.  [c.179]


Положительное влияние органических хроматов даже в незначительных концентрациях на защитные свойства органических фосфатов можно, по-видимому, объяснить тем, что фосфаты образуют нерастворимые соединения с железом, покрывающие основную часть поверхности, а роль хроматов заключается в пассивации пор в фосфатном покрытии. Не исключено также, что в результате совместного действия хроматов и фосфатов изменяется структура защитных слоев.  [c.181]

Чаще всего органические хроматы лучшие ингибиторы, чем неорганические это видно из табл. 5.1.  [c.85]

К недостаткам хроматов следует отнести их токсичность, стимулирование коррозии при недостаточной концентрации, необходимость независимого поддержания pH, чувствительность к органическим загрязнениям.  [c.330]

Р настоящее время в качестве ингибиторов коррозии и коррозионно-механического разрушения используют тысячи различных химических веществ [39]. По механизму действия их можно разделить на анодные, катодные и ингибиторы смешанного типа, в зависимости от того, на какие коррозионные процессы они оказывают максимальное влияние. Для повышения коррозионной стойкости сталей в нейтральных электролитах используют обычно неорганические вещества пассивирующего действия, влияющие на анодные процессы, К ним относятся хроматы, полифосфаты, бензоат натрия, нитраты и пр. Для кислых сред используют преимущественно органические вещества адсорбционного действия, тормозящие катодные процессы. К таким ингибиторам относятся катапин А, катапин К, КПИ-1 ОБ-1, ХОСП-10 и др. [39]. Однако ингибиторы коррозии не всегда могут защищать металл от наводоро-, живания, часто влияющего на его прочность.  [c.111]

Эффект сталестружечного обескислороживания воды тормозится наличием в воде таких сильных замедлителей кислородной коррозии, как нитриты и хроматы, а также большого количества органических веществ.  [c.391]

Закрытые оборотные системы. Самым эффективным способом предотвращения коррозии в таких системах является применение ингибиторов. При отсутствии органических антифризов для этой цели предпочитают использовать хромат натрия, в противном случае можно рекомендовать бензойнокислый натрий.  [c.271]

Ингибирующие свойства хроматов заключаются не столько в замедлении реакции восстановления кислорода, сколько в их способности уменьшать скорость анодной реакции. На рис. 2,6 представлены потенциостатические кривые, полученные на стали в сульфатном растворе с различными хроматами [37]. Как видно, хроматы сильно уменьшают скорость анодной реакции ионизации металла. Пассивирующие свойства сильно зависят и от состава органического катиона. Это указывает на то, что последний участвует в процессе пассивации.  [c.39]

Локализация коррозионного процесса способствует также изменению характера коррозионной среды. Когда электродные реакции не локализованы по поверхности, а статистически распределены по ней, продукты катодной (0Н ) и анодной (Н+) реакций взаимно нейтрализуют друг друга. При локализации же создаются благоприятные условия для подкисления среды на тех участках, где преимущественно протекают анодные процессы pH при этом может измениться на несколько единиц, что сильно увеличивает, как было нами показано на примере органических хроматов, скорость анодного растворения.  [c.84]

Пассиваторы обычно представляют собой неорганические вещества с окислительными свойствами (например, хроматы, нитриты или молибдаты), которые пассивируют металл и сдвигают коррозионный потенциал на несколько десятых вольта в положительную сторону. Непассивирующими ингибиторами, такими как ингибиторы травления, обычно служат органические вещества, которые весьма слабо воздействуют на коррозионный потенциал, сдвигая его в сторону больших или меньших значений, не более чем на несколько тысячных или сотых долей вольта. Как правило, пассивирующие ингибиторы понижают скорость коррозии до очень малых значений, будучи в этом отношении более эффективными, чем большинство непассивирующих.  [c.260]

Т0ры, преимущественно пассиваторы. К ним относятся хроматы и полнфосфаты. Торможение коррозии в кислых средах осуществляется органическими веществами, содержащими серу, азот и кислород.  [c.109]


Хромат стронция Sr rO —порошок лимонно-желтого цвета. Плотность 3750 кг/м укрывистость 70—90 г/м , масло-емкость 43—47 г/100 г пигмента. Растворимость хромата стронция в воде — 0,8 г/л. Полностью растворяется в органических кислотах и разлагается щелочами. Обладает повышенной стойкостью к действию высоких температур (до 1000 °С). При более высоких температурах от хромата стронция отщепляется кислород, и он превращается в одноосновный хромат 2SrO- СГ2О3.  [c.57]

Ранее нами был обнаружен синергетический эффект — усиление защитных свойств ингибиторов в лакокрасочных покрытиях в присутствии других ингибиторов. На основе этой зависимости была исследована возможность получения полимерных покрытий с высокими защитными свойствами при минимальном содержании органических хроматов. В качестве объектов исследования были использованы хроматы и фосфаты этилендиа-мина и гуанидина.  [c.179]

Результаты, полученные при исследовании водных растворов смесей органических хроматов и фосфатов, послужили основанием для проверки этих систем в полимерных покрытиях. С этой целью были изготовлены модельные системы на основе алкидно-стирольного лака МС-080, в которые были введены следующие ингибиторы хромат гуанидина в количестве 3 и 0,03%, фосфат гуанидина в количестве 3%, а также смесь хромата гуанидина (0,03%) с фосфатом гуанидина (3%).  [c.181]

Многие ингибиторы непосредственно влияют на катодный и анодный процессы. Катодные ингибиторы коррозии повышают перенапряжение выделения водорода в растворах кислот (соли и окислы мышьяка, висмута, желатин, агар-агар, декстрин и многие органические вещества), а в ряде случаев уменьшают наводорожива-ние металла (например, промышленные ингибиторы 4М, ПБ-5идр.). Анодные ингибиторы в основном уменьшают скорость анодного растворения вследствие пассивации поверхности (окислители — кислород, нитриды, хроматы).  [c.32]

В последнее время в качестве ингибиторов все большее использование стали получать органические хроматы хроматы цикло-гексиламина, гуанидина, метиламина, изопропиламина и т. д. Влияние содержания хромата циклогексиламина в воде на скорость коррозии стали показана на рис. 5.4 [1 ]. Надежная защита стали обеспечивается уже при небольших добавках ингибитора. В присутствии сульфатов или хлоридов коррозия стали в воде возрастает и защитные концентрации ингибитора растут, причем в растворах, содержащих хлор-ионы, эти концентрации выше, чем в растворах с сульфит-ионами.  [c.85]

Действие сложных органических ингибиторов, являющихся продуктом конденсации этиленоксида с легкой фракцией сырых каменноугольных фенолов, алкилированных сланцевым бензином, как отдельно взятых, так и в сочетании с хроматами, показано в табл. 19.22. Эффективность этих ингибиторов не очень высока, так как максимальное значение у около 6 [231.  [c.332]

Хромоникельмолибденовый сплав Х15Н55М16В типа Хастеллой С применяют в сильно окислительных средах, к которым относятся хлорпроизводные различных органических соединений в растворах гипохлоридов, хроматов, влажном хлоргазе, агрессивных средах производства искусственного волокна. К недостаткам этого  [c.48]

В [6, 7 ] рассмотрен процесс очистки щелочных растворов алюминия, полученных в результате выщелачивания. Гранулированный титаножелезистый магнетит, содержащий алюминий, хром, ванадий и кремний, обжигают с карбонатом натрия и выщелачивают водой. Раствор направляют на экстракционную переработку. Щелочной раствор с pH 13, приводят в контакт с четвертичным амином для удаления хрома. После промывки органического раствора хроматом натрия и реэкстракции хрома хлоридом натрия получают хром высокой чистоты. Его кристаллизуют в виде Na2 r04-41 20. Следующая стадия переработки состоит в экстракции ванадия также при pH 13 четвертичным амином, промывке органического раствора ванадатом натрия и извлечении ванадия высокой чистоты реэкстракцией и осаждением аммиаком с хлоридом аммония.  [c.107]

В [26] рассмотрен процесс извлечения хрома из кислых растворов гальванических ванн. Сг + экстрагировали LA-2 и извле-<али из органического раствора каустиком. Сопоставление с ТБФ доказало, что для экстракции из разбавленных растворов предпочтительно пользоваться амином. Экстракция улучшается при ювышении кислотности от 0,01 до 2 г. В случае ТБФ экстракция улучшается при использовании 4 н. серной кислоты, но ухудшается 1ри понижении кислотности. Хром извлекали из ТБФ реэкстрак-№й хромата натрия. При экстракции LA-2 концентрация хрома 3 отработанных растворах может быть понижена до 10 %.  [c.117]

К физическим методам можно отнести катодную защиту и применение защитных покрытий. Однако имеются данные о том, что покрытия, в частности эпоксидно-каменноугольными смолами, недостаточно стойки к действию сульфатредуциру-ющих бактерий. В качестве бактерицидных добавок к эпоксидно-каменноугольным композициям целесообразно использовать органические соединения ртути, соединения фенола, хромат цинка, органические соединения олова и свинца, четвертичные аммониевые соединения. Концентрация неорганических соединений в покрытиях может достигать 20% (масс.), органических — 0,5—1,0%.  [c.103]

Значительные работы по модифицированию лакокрасочных материалов с помощью ПАВ проведены С. Н. Толстой [80, 92]. И. Л. Розенфельдом и Ф. И. Рубинштейн разработаны ингибированные лакокрасочные материалы, состав, свойства и рекомендации по применению которых содержатся в работах [90, 91]. В качестве ингибиторов коррозии в этих материалах использованы как водорастворимые органические вещества (например, хромат гаунидина), так и маслорастворимые (в частности, присадка АКОР-1).  [c.184]

Патент США, /I/" 4033896, 1977 г. Коррозионно-агрессивными компонентами в водных охлаждающих системах являются преимущественно растворенный кислород и неорганические сопи карбонаты, бикарбонаты, хлориды и (или) сульфаты кальция, магния, натрия. Важными факторами являются также pH и температура. В общем случае повышение температуры и уменьшение pH сопровождается ускорением коррозии. Эффективность ингибирующих композиций некоторых органических фосфонатов можно усилить добавлением цинковых солей и (или) хрома-тов. Однако в последние годы использование цинковых солей и хроматов создает угрозу.загрязнения природных вод. Удаление ионов цинка или хромата осаждением сложно и дорого. Следовательно, эффективные ингибирующие композиции, свободные от ионов таких тяжелых металлов, являются новым требованием промышленности.  [c.9]


Такие цинксодержащие композиции эффективны для защиты стальных поверхностей. Композиции с высоким содержанием цинка могут использоваться в качестве очень тонких покрытий, в отличие от композиций с низким содержанием цинка, которые используются для получения более толстых покрытий. Эти композиции содержат металлический цинк в форме микроскопических частиц, например цинковый порошок или пыль полиол-силикат смесь хроматов стронция, кальция, бария, свинца сульфат свинца смесь хромата цинка и оксида или гидроксида цинка жидкий органический растворитель.  [c.202]

О защитных свойствах органических хроматов можно судить по свойствам хромата циклогексиламина, типичпого представителя этого класса ингибиторов (рис. 5,2). Как видно, в дистиллированной воде защита достигается при весьма малой концентрации ингибитора. Для хромата циклогексиламина она равна 5-10- 4 jj С увеличением концентрации сульфата коррозия в не полностью ингибированных средах возрастает и защитные концентрации ингибиторов растут. В 0,1 и. N32S04 защитная концентрация хромата  [c.158]

При использовании органических хроматов, имеется много доказательств в пользу того, что в защите принимает участие не только анион, но и органический катион. Для этого достаточно сравнить, например, влияние концентрации хроматов калия (см. рис. 5,5) и н-пропиламина (рис. 5,10) на анодное растворение стали. При соотношении концентрации агрессивного иона к пассивирующему, равном 100 1, в пассивной области растворения хромат н-пропиламина не изменяет плотность тока пассивации, в то время как хромат калия увеличивает ее больше, чем на порядок. При соотношении 10 I хромат н-пропиламина переводит  [c.166]

Роль других органических катионов выявляется четко при сопоставлении анодных потенциостатических кривых для различных хроматов при одинаковой концентрации (0,01 н.), не переводящей еще сталь полностью в пассивное состояние (см. рис. 2.6) при одинаковых значениях потенциалов скорости анодного растворения в присутствии различных хроматов отличны сильнее всего сталь пассивируется в присутствии хроматов дициклогексиламина и циклогексиламина, слабее в присутствии хроматов калия и гуанидина. Защитные свойства хромата изолропиламина приближаются к хромату циклогексиламина.  [c.167]

Введение ингибиторов в воду не требует сложного оборудования и контроля и экономически выгодно. При этом следует отличать системы снабжения питьевой водой от систем промышленного водоснабжения. Для питьевой воды возможности ингибирования весьма ограничены в связи с жесткими санитарными нормами питьевую воду можно обрабатывать лишь небольшими дозами силиката натрия (30- 40 мг/л в расчете на ЗЮг) или (и) гексаметафосфата натрия (4- 5 мг/л в расчете на Р2О5). В системах промышленного водоснабжения имеются возможности для более широкого применения самых разнообразных ингибиторов фосфатов, полифосфатов, силикатов, хроматов, бихроматов, вольфрама-тов, ванадатов, молибдатов, нитритов, бензоатов, боратов, органических соединений и т. д. Однако и здесь имеются свои ограничения в незамкнутых прямоточных системах, где расход воды  [c.255]

Защита охладительных систем двигателей внутреннего сгорания (дизели, автомобили) сопряжена со значительными трудностями по следующим причинам системы содержат ряд разнородных в электрохимическом отношении металлов и сплавов (сталь, цинк, латунь, припой, чугун, алюминий) имеют много щелевых зазоров и застойных мест работают при высоких температурах и подвергаются часто эрозионному воздействию и кавитации. Все эти факторы сильно затрудняют подбор ингибиторов. Не представляет труда, как было показано выше, защитить от коррозии сталь или чугун, а также биметаллические системы сталь — медь, однако при наличии в системе алюминия, эксплуатация которого возможна лишь в узком интервале pH, применение щелочных реагентов, хорошо защищающих черные металлы, исключается. Наличие латуни также вносит свои трудности, поскольку медь со многими органическими соединениями, в особенности с аминами, образует легко растворимые комплексные соединения. Особенно трудно защитить от коррозии припой (Pb/Sn — 70/30) так, нитрит натрия, который является хорошим ингибитором для стали, разрушает припой, т. е. самостоятельно применяться не может. Положение осложняется еще и тем, что наличие в системе разнородных в электрохимическом отношении металлов приводит к катодной поляризации одних металлов и анодной поляризации других. Поэтому при определенном общем потенциале, который устанавливается в "системе или на отдельных электродах, некоторые ингибиторы, которые обычно в присутствии одного металла не восстанавливаются, могут восстанавливаться, теряя свои защитные свойства. Этот процесс, например для хроматов, усиливается при наличии в воде органических соединений (уплотнителей органического происхож-  [c.269]

При попытках исключить из ингибированных смесей хроматы исследователи стараются изыскивать эмульгирующие растворимые масла, применять борнитритные смеси, молибдаты, комплексные соединения бора с органическими веществами, смеси нитрита натрия с бензоатом натрия и т. д. Однако многие из этих ингибиторов, хорошо защищая черные сплавы, из-за щелочности средств вызывают коррозию алюминиевых сплавов и слабо защищают свинцово-оловянный припой.  [c.271]


Смотреть страницы где упоминается термин Хромат органические : [c.584]    [c.118]    [c.133]    [c.255]    [c.280]    [c.281]    [c.53]    [c.130]    [c.79]    [c.149]    [c.53]    [c.204]    [c.23]    [c.38]    [c.158]    [c.159]   
Ингибиторы коррозии (1977) -- [ c.158 ]



ПОИСК



Хроматы



© 2025 Mash-xxl.info Реклама на сайте