Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термическая Атмосферы

Окисление и обезуглероживание поверхности часто происходит при нагреве в пламенных или электрических печах без контролируемой атмосферы. Поэтому дают припуск на шлифование, что удорожает и усложняет технологию изготовления термически обрабатываемых деталей. Контролируемая искусственная атмосфера в термических печах является радикальным способом устранения или уменьшения этого дефекта.  [c.307]

Mg) обладают хорошей коррозионной стойкостью и применяются для отливок, работающих во влажной атмосфере. Это сплавы АЛ8, АЛ 13. Часто отливки из алюминиевых литейных сплавов подвергают термической обработке (закалке и старению) для повышения прочности, пластичности, снижения остаточных напряжений.  [c.18]


Для получения требуемых механических свойств титановые сплавы подвергают термической обработке (отжигу, закалке и старению) в печах с защитной атмосферой. Титан и его сплавы используют для изготовления деталей самолетов, в химическом машиностроении, судостроении и других отраслях машиностроения.  [c.19]

Основными видами термической обработки являются отжиг и закалка. Операцию отжига используют для повышения технологических свойств при производства деталей из тугоплавких металлов. Отжиг снижает прочностные характеристики и в несколько раз повышает пластичность материала, что облегчает дальнейшую обработку давлением (ковка, протяжка, прокатка и т. д.). Наличие пор в материалах делает их чувствительными к окислению при нагреве и к коррозии при попадании закалочной жидкости в поры при закалке. В качестве охлаждающих сред необходимо выбирать жидкости, не представляющие опасности с точки зрения коррозии в процессе хранения и эксплуатации закаленных деталей. В некоторых случаях детали из железного порошка подвергают науглероживанию методами химикотермической обработки — нагреву в ящиках с карбюризатором или в газовой науглероживающей атмосфере. Процесс насыщения углеродом протекает значительно быстрее вследствие проникания газов внутрь пористого тела.  [c.425]

Диссоциированный аммиак (ДА), содержа-И1.НЙ 75 % H.J и 25 % No, или диссоциированный аммиак с частичным дожиганием водорода с а 0,7-h0,9 и последующей осушкой (ПСА-08). Атмосфера ПСА-08 состоит из 7—20 % Н.2, 84—80 % N3. Диссоциированный аммиак (ДА и ПСА-08) применяют главным образом при иаг реве для термической обработки нержавеющих и электротехнических сталей.  [c.203]

Наиболее эффективная защита металла шва и зоны термического влияния обеспечивается при сварке в камерах с контролируемой атмосферой. Камеры предварительно продувают или вакуумируют, а затем заполняют защитным (инертным) газом заданного состава под небольшим давлением.  [c.80]

Конус высотой /г = 5 м с углом при вершине Рк = 15° совершает полет в атмосфере на высоте Н = 200 км со скоростью Ксс = 4500 м/с под углом атаки а = = 0. Найдите аэродинамическое сопротивление при условии, что отражение молекул полностью диффузное, а термический коэффициент аккомодации т) = 1.  [c.712]

Рассмотрим физико-химические процессы, обусловленные термической диссоциацией исходного вещества, его химическим взаимодействием с материалом контейнера и атмосферой кристаллизации. Без учета этих процессов невозможно определить температурно-временной режим кристаллизации, а следовательно, оптимальные условия и метод выращивания монокристаллов.  [c.52]


Термический КПД газотурбинной установки можно повысить, введя ступенчатый подогрев рабочего тела и ступенчатое сжатие воздуха в компрессоре с охлаждением его между ступенями (рис. 1.35, в). Воздух, всасываемый из атмосферы, сжимается адиабатно (процесс 1Г) в первой ступени компрессора и подается в теплообменник, где охлаждается при постоянном давлении (процесс ГГ ) до первоначальной температуры. После теплообменника сжатие воздуха продолжается (адиабата 1"2) во второй ступени компрессора. Сжатый воздух подогревается в теплообменнике-регенераторе (изобара 28) и поступает в камеру сгорания, в которой получа( т дополнительное количество теплоты (изобара 84) от горячего источника.  [c.68]

Сплав ВТ6 может свариваться точечной, стыковой и аргоно-дуговой сваркой с применением защитной атмосферы. Предел прочности сварного соединения составляет 90% прочности основного материала. После сварки необходима термическая обработка для восстановления пластичности (отжиг при 700—800°С). Сплав обладает удовлетворительной обрабатываемостью резанием. При механической обработке рекомендуется применять резцы нз твердых сплавов.  [c.380]

Была замерена и записана на профилографе—профилометре чистота поверхности образцов из сталей до и после термической обработки в натрий-бор-силикатных расплавах и в воздушной атмосфере (1100° С, выдержка 1—2 ч). Чистота поверхности до и после обработки в расплавах не изменилась, а после часовой выдержки в воздушной атмосфере ухудшилась.  [c.171]

Среди всех синтезированных покрытий высокими оптическими характеристиками (рис. 2), способностью прочно закрепляться при низкой температуре на поверхности легкоплавких сплавов, устойчивостью во влажной атмосфере и к термическим ударам по режиму —60- — -120° С, вибростойкостью от 10 до 2500 Гц при ускорении от 1 до 12 g, относительной пластичностью при испытаниях на изгиб обладают покрытия на основе пигмента из смеси окислов магния, кремния, циркония или иттрия со связкой двойного калиево-литиевого силиката.  [c.202]

Как правило, требуемый срок службы летательных аппаратов в авиационной технике значительно выше, чем в космической. В прошлом космические аппараты предназначались для разового использования. Основные силовые нагрузки оказывались на конструкцию в течение первых минут при старте, а основные термические нагрузки имели место либо на старте, либо при входе в плотные слои атмосферы (в случае возвращения аппарата). Деградацию материала под действием повторяющихся нагрузок (усталость) или постоянной нагрузки при повышенной температуре (ползучесть) можно было серьезно не учитывать. Таким образом, до последнего времени в космической технике практически игнорировались принятые в авиастроении понятия срока службы, продолжительности безотказной работы и остаточной прочности.  [c.96]

Малые реле используются в электрических схемах самолетов и в ряде других случаев, когда необходима очень высокая надежность. Для защиты от загрязнений и органических паров реле помещают в герметичный металлический корпус. Во многих таких реле материалом контактов и пружин служит серебро с 0,3% магния и 0,25% никеля. Для получения этого материала заготовке придают необходимую форму и подвергают дисперсионному твердению путем нагрева до 725 °С в окислительной атмосфере. Продолжительность процесса определяется временем окисления магния и никеля, после термообработки пружины свободны от термических напряжений. В ряде случаев конец пружины раздваивают для увеличения площади соприкосновения и надежности схемы.  [c.428]

Термическая обработка. Это один из важнейших способов предотвращения склонности к МКК аустенитных коррозионно-стойких сталей. При борьбе с МКК, появившейся в результате науглероживания, перегрева, недостаточной стабилизации карбидообразующими элементами или других причин, хорошие результаты дает стабилизирующий отжиг в течение нескольких часов при 850—900 °С. При таких нагревах наиболее полно связывается углерод в карбиды титана и сталь становится невосприимчивой к МКК после повторного нагрева в интервале опасных температур. Также рекомендуется проводить повторную аустенизацию (с 1050 °С) с последующим отжигом в течение 3 ч при 850— 900 °С [401. Помимо этих, довольно трудоемких операций, можно для устранения склонности к МКК, появившейся в результате науглероживания или перегрева, проводить по специальным режимам термическую обработку в вакууме, в атмосфере водорода.  [c.61]


Турбулентная диффузия загрязнений, обусловленная турбулентным перемешиванием воздуха [6, 8], зависит от метеорологических условий и прежде всего — от поля осредненной скорости ветра и от термической конвекции в приземном слое атмосферы.  [c.19]

Высокие темпы ужесточения норм на выбросы вредных веществ привели к ухудшению показателей топливной экономичности автомобилей в среднем на 13% вследствие применения многочисленных дополнительных устройств снижения токсичности, дефорсирования двигателей, введения систем рециркуляции ОГ, установки термических и каталитических нейтрализаторов без фактического улучшения рабочего процесса двигателя. Кроме значительного возрастания первоначальных и эксплуатационных затрат это привело с учетом перенасыщенности страны легковыми автомобилями к общему росту выбросов ОГ, повышенно.му тепловому загрязнению атмосферы и другим побочным последствиям. Повышение цен на топливо, так называемый энергетический кризис, привеоТи к необхо-  [c.33]

Выбор среды для нагрева при термической обработке. При нагреве в пламенных или электрических печах взаимодействие печной атмосферы с поверхностью нагреваемого изделия приводит к окислению и обезуглероживанию стали. Для предохранения изделий от окисления и обезуглероживания в рабочее пространство иечи вводят защитную газовую среду (контролируемые атмосферы).  [c.203]

Материалы. Изготовление. Крепежные детали рядового назначения изготовляют из углеродистых сталей (оо,2 = 40 кгс/мм ) или хромистых (< 0.2 = 70 кгс/мм ). Оптимальное содержание углерода в углеродистых и низколегированных сталях 0,4 — 0,45%. Термическая обработка закалка в масло с 750 —800"С, отпуск на сорбит (HR 35 — 40). Нагрев под закалку ведут в нейтральной атмосфере, вакууме или расплавленных интeт чe киx шлаках во избежание окисления и обезуглероживания, резко снижающего циклическую прочность. Для изготовления ответственных болтов применяют хромансили типа ЗОХГС 40ХГС (оо,2 = 90 110 кгс/мм ). В наиболее нагруженных соединениях применяют Сг — Мо стали или Ni —Сг —W стали (< 0,2 = 120 150 кгс/мм ).  [c.515]

Методы исправления дефектов на лопатках ГТД изложены в гл. 13. Ремонт литейных дефектов осуществляют только после предварительной подготовки отливок - после химической (травление) или механической обработки. Для исправления дефектов жаропрочных отливок широко применяют арго-но-душвую сварку, которую проводят в специальной камере в атмосфере аргона. Таким методом исправляют поверхностные дефекты на отливках из титанового сплава и жаропрочных сплавов. Для снятия остаточных термических напряжений отливки подвергают отжигу. Режим отжига выбирают в зависимости от массы, состава, сплава и назначения.  [c.382]

Процесс расширения в цилиндре идеального двигателя заканчивается в точке с (рис. 13.3), затем рабочее тело через выпускной клапан выталкивается в атмосферу, где продолжается расширение по адиабате с-с, а затем охлаждается по изобаре -d. Работа расширения газа в атмосфере (пл. d) на вал не передается (не используется), поэтому процесс выхлопа можно заменить изохорой -d, при этом в формуле термического к. п. д. = можно считать, что /—работа, переданная на вал, численно равная пл. abed, а —количество теплоты сгорания топлива.  [c.131]

Аккомодация 177 Анизотропия механических свойств 292 пластических свойств 500 термического расширения 297 Атмосфера Коттрелла 91  [c.579]

Вольфрам — чрезвычайно тяжелый твердый металл серого цвета. Среди металлов он обладает наиболее высокой температурой плавления (3380°С). Вольфрам получают из руд различного состава главным образом из вольфрамита пРе Л 04хгаМп Л 04 и шеелита Са 04 промежуточным продуктом является вольфрамовая кислота Н21У04, из которой путем восстановления водородом при нагреве до 900 °С получают металлический вольфрам в виде мелкого порошка с размером зёрен 1...7 мкм. Из этого порошка прессуют стержни, которые подвергают сложной термической обработке в атмосфере водорода, ковке и волочению в проволоку (диаметром до 0,01 мм), прокатке в листы и т. п.  [c.28]

Для изготовления деталей, работающих в окислительной атмосфере при 800 с, выбрана сталь 12Х18Н9Т. Укажите состав, обоснуйте выбор стали для данных условий работы и объясните, для чего вводится хром в эту сталь. Какие виды термической обработки применяют для этой стали  [c.152]

Термическая обработка электротехнической низкоугле-РОДИСТОЙ стали заключается в следующем отжиг в обезуглероживающей среде по режиму нагрев до 950° С выдержка 2 ч, охлаждение со скоростью 40° в час до 600° С и далее на воздухе. Отжиг в атмосфере влажного  [c.135]

Найдем выражение термического к. п. д. цикла газотурбинной установки (так мы будем называть установку, включающую собственно газовую турбину и компрессор), в которой подвод тепла осуществляется при р = onst. Для термодинамического рассмотрения предположим процесс замкнутым и обратимым, как это мы делали уже раньше. Для упрощения рассмотрим цикл в отсутствие подогревателя 2 на рис. 4-9. В этом случае воздух непосредственно поступает из компрессора в камеру сгорания, а отработавшие газы из турбины направляются без использования их тепла в атмосферу. Такой предварительный подогрев воздуха (рис. 4-9) отходящими газами называется регенерацией. Регенерация хотя и повышает к. п. д. установки, но  [c.163]

В качестве примера определим термический к.п.д. двигателей, работающих по обратимому циклу Карно 1) двигателя внутреннего сгорания (дизеля), если Г1 = 2200 К и 2 = 550 К 2) пароэнергетической установки, если 7 i = 725 К и 72 = 300 К 3) паровой машины с выхлопом в атмосферу, если 7 i = 550 К Га = 375 К.  [c.109]

Расширение пределов рабочего процесса. Из выражений (1.292) и (1.293) очевидна цциесообразность понижения давления Р2 в объеме, принимающем отработавший пар турбины (точка 2, рис. 1.36). Действительно, при выпуске пара в атмосферу /ц = 1 — 2- (рис. 1.36), при выпуске в конденсатор, создающий в объеме пониженное давление р2, 1ц = 1 — — 2 И /ц > /ц. Чем меньше давление в конденсаторе (глубже вакуум), тем больше работа пара на лопатках турбины и выше термический КПД.  [c.69]


Для избежания цветов побе>(<алости на поверхности пресс форм которые могут появиться после термической обработки в обычной атмосфере рекомендуется перед термической обра боткои нанести на поверхность пресс форм кистью или тампоном обмазку содержащую 300 г/л окиси цинка и 80—100 г/л борной кислоты  [c.32]

Полупроводниковые материалы. В течение последних лет ведутся интенсивные поиски способов получения тончайших защитных пленок на поверхности полупроводниковых пластин и приборов. Теоретические расчеты показали, что такие пленки должны иметь высокое удельное электросопротивление, эффективную маскирующую способность и обеспечивать стабильность параметров полупроводниковых приборов. Проведенными в Институте опытами установлено, что методом осаждения стеклообразователей из раствора можно получить пленку стекла толщиной 0.1 —1.0 мк, которая обладает удельным электрическим сопротивлением 10 —10 ом-см, эффективной маскирующей способностью в процессе внедрения диффузантов, устойчивостью во влажной атмосфере, высокой термостойкостью, растворимостью в обычных травителях и характеризуется хорошей адгезией с использованием для фотолитографии резистом. Процесс получения пленок из раствора более производителен и осуществляется при более низкой температуре, чем процесс термического оплавления кремния. Метод получения пленок применяется при изготовлении приборов по планарной технологии.  [c.8]

В работе [3] отмечается, что низкотемпературное разрушение может ускоряться, если в образцах присутствуют диспергированные включения примеси или второй фазы, например, в ZrBeJз. При существенном различии коэффициентов термического расширения включений и матрицы около включений могут образовываться микротрещины, по которым будет происходить окисление. Авторы [3] указывают также на важную роль состава атмосферы испытания, в частности ее влажности.  [c.293]

Авторами совместно с А. В. Гурьевым, В. И. Водопьяновым, М. Б. Бодуновой и В.А. Шером изучено влияние термической Обработки, проводимой в атмосфере воздуха и применяемой для снятия остаточных сварочных напряжений, на характеристики трещиностойкости сплавов ВТ5-1 и ВТ6. При проведении опытов необходимо было учесть влияние поверхностного газонасыщения на характеристики трещиностойкости и неизбежно сопутствующий данной термообработке распад а-фазы. Мни-тывая, что распад а-фазы наиболее интенсивно протекает в интервале 500—600°С, а температура снятия остаточных напряжений, как правило, составляет 600—700°С, опыты проводили в основном после нагрева при бОО С с разной выдержкой и частично после нагрева при 700°С с различной скоростью охлаждения.  [c.132]

В ИПП УССР создана установка для исследования термической усталости в атмосфере и вакууме при температурах до 2800 К при асимметричных циклах нагружения.  [c.269]

Термическое травление в газовой атмосфере или высоком вакууме непосредственно связано с высокотемпературной микроскопией. Чтобы избежать изменений химического состава стали, происходящих при использовании диффузионных методов, Обер-хоффер и Хегер [46] и позднее Дэй и Остин [47] разработали способ термического травления. Тщательно отполированный образец нагревают в вакууме или атмосфере защитного газа (например, осушенного и очищенного водорода) и затем сразу же, не допуская его контакта с внешней средой, закаливают в ртутной ванне. Шеки [48] для выявления границ зерен аустенита использовал содержащую кислород струю азота.  [c.91]

Максимальная избирательность травления поверхности металла должна достигаться в газовой атмосфере или квазивакууме (8 = 1) 1п (Ra/Rb) — 70. Действительно, широкое распространение получило так называемое термическое травление дислокаций, проводимое при повышенных температурах в разреженной атмосфере кислорода.  [c.172]

При нагреве в атмосфере титан и его сплавы покрываются окалиной, а при высоких температурах наводо-раживаются. Поэтому рекомендуют термической обработке подвергать детали с припуском не менее 0,3 мм на сторону. Большая часть  [c.98]

Механическим путем чаще всего удаляют толстые окисные слои, которые образуются при термической обработке стали. Слой состоит из трех окисей железа. Ближе всего к поверхности образуется вюстит FeO, на долю которого обычно приходится 80% общей толщины окалины он лучше других растворяется в кислотах. Следующий слой, который составляет примерно 18% общей толщины окалины,— это слой магнетита Рез04. Третий, наиболее тонкий слой образует гематит РегОз, который имеет красно-коричневую окраску. Однако отношение толщин отдельных окислов зависит от химического состава стали, условий нагрева, конечной температуры прокатки, атмосферы печи и скорости охлаждения после прокатки. В интервале температур 700—900° С доля вюстита — наибольшая. Магнетит начинает появляться при температуре 400° С до 700° С его количество практически не увеличивается начиная с 900° С, его образование идет быстро. Гематит образуется при температуре более 900° С (рис. 77).  [c.63]

Различные технологические нагревы могут привести к образованию или растворению некоторых фаз, снятию внутренних напряжений, но при их производстве могут происходить и побочные процессы, влияющие на склонность к МКК- Так, в процессе термической обработки стали с поверхности могут подвергаться науглероживанию при наличии остатков органических смазок. Наугле-роженный слой будет нестойким против МКК (751. При этом возможна локализация МКК, поскольку науглероживание будет неравномерным. При нагревах в некоторых защитных атмосферах  [c.57]


Смотреть страницы где упоминается термин Термическая Атмосферы : [c.309]    [c.289]    [c.169]    [c.310]    [c.185]    [c.237]    [c.265]    [c.213]    [c.89]    [c.7]    [c.327]    [c.252]    [c.20]   
Машиностроение Энциклопедический справочник Раздел 3 Том 7 (1949) -- [ c.2 , c.561 , c.562 , c.564 ]



ПОИСК



Атмосфера

Атмосфера и давление в рабочем пространстве термического агрегата

Защитная атмосфера при термической обработке стали

Конторские помещения цеховые — Размеры контролируемые атмосферы — Применение при термической обработке стал

Контролируемые атмосферы при термической обработке лауреат Сталинской премии, доц., канд. техн. наук. А. А. Шмыков)

Пайка сталей и сплавов жаропрочных — Защитные атмосферы 240 — Прочность в зависимости от термической обработки и от размера зазора 235, 236 — Припои

Термическая Применение контролируемых атмосфер

Термическая обработка сплавов жаропрочных 119—121 —Применение защитных атмосфер

Термическая обработка сплавов жаропрочных 119—121 —Применение защитных атмосфер свойствами

Термическая обработка сталей высокомарганцовистых жаропрочных 119—121 —Применение защитных атмосфер

Термические Атмосферы контролируемы

Термические Оборудование для контроля атмосфер Планировка

Термические Оборудование для контроля атмосфер Планирозка

Термические печи горизонтальные с вращающимся подом или сводом нейтральной или активной атмосферой



© 2025 Mash-xxl.info Реклама на сайте