Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрон Механические свойства

Металлы высокой степени чистоты — сверхчистые металлы — используют в атомной, электронной и радиотехнической промышленности. Содержание примесей в таких металлах ограничивается одним атомом на 10 атомов основного металла, потому что от наличия примесей в значительной степени зависят физико-химические и механические свойства металлов. Так, ничтожно малое количество некоторых примесей повышает способность металлов (например, 2г, А1, Mg) к поглощению тепловых нейтронов и делает их непригодными для использования в атомной технике.  [c.230]


Смешанные способы возбуждения возмущений. В тех случаях, когда требуется получить и сохранить возмущения малой амплитуды, используются электрические и электронные способы возбуждения. В этих способах для приведения в действие преобразователя, превращающего электрическую энергию возбуждающего тока в механическую энергию волны напряжений в теле, используется переменный ток, частота волн при этом лежит между 20 кГц и 50 мГц. С помощью соответствующих контуров можно получать или непрерывный ряд волн, или импульсы, состоящие из коротких серий волн высокой частоты, повторяющихся регулярно с низкой частотой. Для этого используются преобразователи, принцип действия которых основан на магнитострикционном или пьезоэлектрическом эффектах. Материалами для пьезоэлектрических преобразователей кроме кристаллов кварца служат искусственные ферроэлектрические кристаллы (в частности, титанат бария в виде поликристаллической керамики), имеющие по сравнению с естественными кристаллами большую чувствительность и меньшее сопротивление. Однако температура Кюри искусственных кристаллов сравнительно низка (при нагревании выше этой температуры пьезоэлектрические свойства пропадают). Материалами для магнитострикционных преобразователей служат ферромагнитные элементы и сплавы. Максимальные деформации в обоих случаях определяются механическими свойствами материала тела. Для возбуждения слабых импульсов напряжений используют искровой способ, предложенный Кауфманом и Ревером [52]. Преимущество этого способа состоит в том, что искра действует как точечный источник, тогда как пьезоэлектрический преобразователь, благодаря дифракции, дает сложную волновую картину.  [c.17]

Дислокации влияют не только на механические свойства. Так, их появление меняет энергетический спектр и подвижность электронов, вследствие чего изменяются электрические свойства.  [c.245]

Особенности механизма описываемого окислительного изнашивания были изучены в многочисленных исследованиях, проведенных под руководством Б.И. Костецкого, с помощью газового, химического, электронографического, рентгеноструктурного, термографического, электронно-микроскопического анализов образцов, испытанных в различных газовых средах и в вакууме при трении металлов и сплавов с различными механическими свойствами и сродством к кислороду.  [c.133]

Использование в качестве легирующих добавок карбидных фаз позволяет получить структуру по типу "твердые включения-вязкая матрица", подобную твердым сплавам и обладающую повышенной твердостью. Степень упрочнения материала и изменение механических свойств зависят от режимов электронно-лучевой обработки и состава легирующих добавок. Оптимальное сочетание указанных факторов приводит к существенному повышению износостойкости модифицированных сталей (рис. 8.11).  [c.254]


Важной задачей является правильный выбор способа сварки в соответствии с назначением, формой и размерами конструкций. Назначение способа сварки в значительной степени определяется свариваемостью, особенно при соединении разнородных материалов, конструктивным оформлением сварных соединений, степенью их ответственности и производительностью процесса. Необходимо также учитывать тип соединений, присадочный материал, приемы и обеспечение удобства выполнения сборочно-сварочных соединений. Эти условия предопределяют механические свойства соединений и допускаемые напряжения, необходимые для прочностных расчетов конструкций. Так, для сварки длинных швов встык более технологично применение дуговой автоматической сварки. Толстостенные элементы соединяют электрошлаковой сваркой. Для сварки внахлест тонколистовых материалов рационально применение контактной сварки. Некоторые виды свариваемых материалов (алюминиевые и титановые сплавы, нержавеющие стали и т. п.) требуют надежной защиты зоны сварки от окисления, т. е. применения аргонно-дуговой, электронно-лучевой и диффузионной сварки. Необходимо также учитывать возможности механизации и автоматизации процесса выбранного способа сварки.  [c.164]

Атомный номер меди 29, атомная масса 63,54, атомный радиус 0,128 ни. Известно 14 изотопов стабильны два 63 и 65. Электронное строение [Аг]3 4з. Электроотрицательность 1,0. Потенциал ионизации 7,73 эВ. Кристаллическая решетка — г. ц. к. с параметром п=0,3615 нм. Плотность 8,94 т/м . /пл=1084°С, кип=2540°С. Механические свойства меди при 20 °С =132 ГПа, 0=42 ГПа, р=0,35, 0 =225 МПа, 0о,2=60 МПа, 6 = 60 %, ф = 75 %. Бескислородная медь высокой чистоты имеет ф = 95%  [c.29]

Добавка 0,01 % бора улучшает механические свойства деформированного молибдена электронно-лучевой плавки при 20 °С [1]  [c.133]

Механические свойства монокристаллов рения существенно зависят от ориентировки. Благоприятно ориентированные монокристаллы электронно-лучевой зонной плавки рения чистотой 99,94 % (от.) имеют при 20 и 1000 °С 6=300 %, а при —269 С 6 = 50 % [11-  [c.143]

Рис. 82. Влияние температуры на механические свойства никеля [I] / — технического 2 — электронно-лучевой плавки Рис. 82. <a href="/info/222925">Влияние температуры</a> на <a href="/info/199518">механические свойства никеля</a> [I] / — технического 2 — электронно-лучевой плавки
Все свойства металлов, как и других элементов, прежде всего определяются порядковым номером в Периодической системе элементов Д. И. Менделеева, т. е. числом электронов в атоме и их строением, определяющим кристаллическую структуру, физические, химические и, механические свойства. Последние зависят прежде всего от температуры.  [c.190]

Сопоставление волновых и механических свойств электрона производится с помощью соотношений де Бройля, по которым (формула (1) 17)  [c.95]

КОРРОЗИОННАЯ СТОЙКОСТЬ, СТРУКТУРА II МЕХАНИЧЕСКИЕ СВОЙСТВА НИКЕЛЕВЫХ СПЛАВОВ И ЛОПАТОК ГТУ С ЭЛЕКТРОННО-ЛУЧЕВЫМИ ПОКРЫТИЯМИ  [c.179]

Благодаря развитию современных методов испытания оказалось возможным определять твердость любых металлов, сплавов, ковалентных и ионных кристаллов, включая самые хрупкие и твердые вещества (такие, как кремний, карбид бора, алмаз и др.). Громадная информация по твердости, во много раз превосходящая данные по другим механическим свойствам веществ, особенно малопластичных, способствовала выяснению влияния типа кристаллической структуры, электронного строения и типа межатомной связи на твердость, представляющую обобщенную характеристику сопротивления материала пластической деформации.  [c.22]


При изыскании новых путей автоматизации средств тепловой микроскопии необходимо учитывать вопросы стандартизации и унификации аппаратуры, а также максимального сопряжения установок с математическими средствами обработки результатов эксперимента. Схема принципиально возможной, полностью автоматизированной системы проведения исследований на установках для тепловой микроскопии представлена на рис. 2. Как видно из рассмотрения данной схемы, автоматизация обработки информации, получаемой по всем трем основным каналам, должна предусматривать наличие специального блока обработки экспериментальных данных /, включающего в себя малогабаритную электронную вычислительную машину и систему ввода данных, полученных с помощью блока аппаратурного анализа микроструктуры //, блока регистрации изменений физических характеристик ///и блока регистрирующих механических свойств IV, а также дополнительные устройства для печатания (телетайп) V и графической выдачи результатов VI.  [c.10]

Принципиально использование резервов, обеспечивающих прирост информационной мощности и производительности аппаратуры, а также повышение качества получаемой информации может быть представлено схемой, приведенной на рис. 179. Автоматизация обработки информации, получаемой по всем трем каналам, должна предусматривать наличие специального блока обработки экспериментальных данных /, включающего в себя малогабаритную электронную вычислительную машину и систему ввода данных, полученных с помощью блока аппаратурного анализа микроструктуры II, блока регистрации изменений физических характеристик III и блока регистрации механических свойств IV, а также дополнительные устройства для печатания типа телетайпа V и графической выдачи результатов VI.  [c.280]

Создание перспективных средств тепловой микроскопии должно осуществляться на основе анализа тенденций развития отечественной и зарубежной аппаратуры. При этом необходим учет достижений в области создания и развития машин для испытания механических свойств, аппаратуры для рентгеноструктурного анализа,- просвечивающей и растровой электронной микроскопии и т. д.  [c.292]

Магниевые сплавы. Основными элементами, входящими в магниевые сплавы, кроме самого магния, являются А1, Zn, Мп, Первые два увеличивают прочность, а последний снижает склонность к коррозии. Вредными примесями являются Fe, Си, Si, N1. Магниевые сплавы обладают весьма высокой удельной прочностью (удельный вес магния 1,74 Псм , а его сплавов — ниже 2,0 Г/см ). Вследствие легкости сплавов магния их называют электронами. Применение магниевых сплавов позволяет уменьшать вес деталей, по сравнению с деталями из алюминиевых сплавов примерно на 20—30% и по сравнению с железоуглеродистыми — на 50—75%. Так же как и алюминиевые, магниевые сплавы делятся на литейные и обрабатываемые давлением. У последних высокая ударная и циклическая вязкость. Обработка давлением существенно повышает прочность магниевых сплавов. Механические свойства Mg литого и деформированного приведены в табл. 4.13. На основе магния созданы жаропрочные сплавы (см. раздел 13 настоящего параграфа).  [c.320]

Для получения высококачественных металлов в современной металлургии все шире начинают использовать различные методы рафинирования с помощью вакуумного, электрошлакового, электронно-лучевого, плазменно-дугового переплавов, изменения технологии конечного раскисления и пр. Все эти методы направлены на очистку сталей от вредных примесей (кислород, сера, фосфор), а также неметаллических включений. Металлы после рафинирования имеют, как правило, более высокие показатели механических свойств, высшую плотность, меньшую физическую неоднородность, анизотропию механических характеристик и др.  [c.56]

Лишь при сочетании обычных испытаний на усталость с другими методами анализа (макро- и микроструктурные исследования, в том числе с использованием электронной микроскопии рентгенографические методы изучение механических свойств металлов, подвергавшихся цикли-  [c.33]

Следует, однако, отметить, что лампа R A-5734, имеющая очень хорошие механические характеристики, не может служить оптимальным по своим электрическим параметрам образцом осуществления механически управляемого триода продольного управления. Конусная форма подвижного анода, позволяющая улучшить механические свойства датчика, является малопригодной для использования в механотроне продольного управления электронными токами, который должен отличаться высокой чувствительностью по току или по напряжению.  [c.117]

Материалы катода должны характеризоваться а) высокой температурой плавления (не менее 2500°С) б) высокой работой выхода электронов (не ниже 4,2 эВ) в) высоким уровнем механических свойств при повышенных температурах г) минимальной испаряемостью д) низкой степенью черноты е) малым сечением захвата тепловых нейтронов ж) минимальной газовой проницаемостью з) совместимостью с цезием и рядом других свойств.  [c.32]

Этот вывод был полностью подтвержден данными количественной электронной металлографии и сопоставлением механических свойств исследованных плавок, обработанных по указанному режиму.  [c.97]

Из 106 элементов периодической системы Д.Н. Менделеева 76 составляют металлы. Все металлы имеют общие характерные свойства, отличающие их от других веществ Э го обусловлено особенностями их внуфиатомного строения. Согласно современной теории строения атомов каждый атом представляет сложную систему, которую схематично можно представить состояп(сй из по-ложителыю чаряженного ядра, вокруг которого на разном расстоянии движутся отрицательно заряженные электроны. Притягивающее действие ядра на внешние (валентные) электроны в металлах в значительной степени скомпенсировано электронами внутренних оболочек. Поэтому валентные электроны легко отрываются и свободно перемещаются между образовавшимися положительно заряженными ионами. Слабая связь отдельных электронов с остальной частью атома и является характерной особенностью атомов металлических веществ, обуславливающей их химические, физические и механические свойства. Общее число не связанных с определенным атомом электронов в различных металлах  [c.271]


Из 106 элементов периодической системы Д.И. Менделеева 76 составляют металлы. Все металлы имеют общие характерные свойства, отличающие их от других веществ. Это обусловлено особенностями их внутриатомного строения. Согласно современной теории строения атомов каждый атом представляет сложную систему, которую схематично можно представить состоящей из положительно заряженного ядра, вокруг которого на разном расстоянии от него движутся отрицательно заряженные электроны. Притягивающее действие ядра на внешние (валентные) электроны в металлах в значительной степени скомпенсировано электронами внутренних оболочек. Поэтому валентные электроны легко отрываются и свободно перемещаются между образовавшимися положительно заряженными ионами. Слабая связь отдельных электронов с остальной частью атома и является характерной особенностью атомов металлических веществ, обусловливающей их химические, физические и механические свойства. Общее число не связанных с определенным атомом электронов в различных металлах неодинаково. Этим объясняется довольно значительное различие в степени металличности отдельных металлов. Наличием электронного глаза объясняют и особый тип межатомной связи, присущей металлам.  [c.37]

Уровень достижений в области получения твердых материалов с улучшенными свойствами сейчас высок. Однако эти достижения были бы невозможны без научно обоснованного подхода к проблеме улучшения механических свойств. Возможности для такого подхода появились с развитием физических методов исследования твердых тел и прежде всего структурных рентгеновского, электро-нографпческого, нейтронографического и электронно-микроскопи-ческого. Стало ясно, что. большинство свойств твердых тел зависит от особенностей их атомной структуры. Крупным шагом в развитии физической теории прочности твердых тел явились теория несовершенств и, в первую очередь, теория дислокаций. Оказалось, что механическая прочность твердых тел зависит, главным образом, от дислокаций и что небольшие нарушения в расположении атомов кристаллической решетки приводят к резкому изменению такого структурно чувствительного свойства, как сопротивление пластической деформации.  [c.115]

Модификация структуры основывается на влиянии изменений параметров микроструктуры (размер зерна, кристаллографическая текстура, плотность дислокаций) на механические свойства и износостойкость материалов. Примерами структурной модификации приповерхностного слоя являются дробеструйная обработка, накатывание роликом, вибрационное накатывание, ультразвуковая упрочняющая обработка, алмазное выглаживание, электромеханическое упрочнение 13]. Известно, ч го поверхностная закалка после нагрева приводит к уменьшению размера зерен вблизи поверхности и увеличению локального напряжения течения. Поэтому поверхностный нагрев с применением направленных источников энергии, таких, как лазер и электронный луч, может использоваться для оплавления и последующего быстрого затвердевания (кристаллизации) поверхностного слоя. Названные мегоды обработки вызывают yny4nJ HHe размеров зерна, формирование мелкой, субзеренной структуры, увеличивают концентрацию выделений и упрочнение, приводят к появлению новых полезных фаз. растворению или удалению инородных включений [19]. Перечисленные эффекты структурной модификации делают ее весьма перспективной, а развитие метода входит в число актуальных задач гриботехнологии.  [c.39]

Ниже приведены механические свойства меди после электронно-лучевой плавки н холодной прокатки (ораст=20 мм/мин)  [c.40]

Атомный номер празеодима 59, атомная масса 140,907, атомный радиус 0,1828 нм. Известен стабильный изотоп с атомной массой 139. Электронное строение [Хе]4Р6з1 Электроотрицательность 0,8. Потенциал ионизации 5,42 эВ. Кристаллическая решетка — п.г. с параметрами а = =0,3664 нм и с= 1,1807 нм, с/а=3,222. Плотность 6,773 т/м . вл= = 931 С, кип = 3520°С. Механические свойства =33 ГПа, (3=14 ГПа, р = 0,30, Ов=112 МПа, Оо,2=70 МПа, 6=15 /о, Ф=67 %.  [c.78]

Изучение развития усталостных трещин показало, что энергетический баланс напряженного состояния в зоне трещины (теория Грифита) тесно связан с особенностями развития дислокационной структуры материала. Электронно микроскопический анализ позволил установить, что в зависимости от механических свойств  [c.232]

Как известно [1], пластическая деформация определяется как деформация, приводящая к остаточному изменению размеров образца (заготовки, прессовки и т. д.), ее мерой является величина натурального логарифма отношения конечного и начального размеров. Для самого же материала, который, образно говоря, размеров образца не знает и не помнит , мерой пластической деформации является только остаточная плотность дислокаций, связанных в определенную структуру (чаще всего ячеистую). При этом для одних условий деформации (Г = onst и е = onst) эти механическое и физическое определения можно привести в соответствие, однако при изменении условий появляется неопределенность. Дело в том, что одна и та же деформация, но при разных, например, температурах будет давать даже без учета процессов возврата различную остаточную плотность дислокаций и различную структуру [47, 373], следовательно, и свойства материала после таких обработок должны отличаться. Эта неопределенность затрудняет объяснение механических свойств деформированных металлов, их сравнение со свойствами тех же металлов в рекристаллизованном состоянии. Возникает и дополнительное осложнение, связанное с тем, что, как показывают данные электронно-микроскопического исследования (рис. 4.13), при повторной деформации дислокационная  [c.175]

В настоящей работе описаны результаты исследования нескольких типов сварных соединений сплава на основе никеля марки In onel Х750— одного из основных перспективных материалов для использования в криогенной технике. Исследованы сварные соединения сплава, выполненные дуговой сваркой вольфрамовым электродом в среде защитного газа (ДЭС) и электронно-лучевой сваркой (ЭЛС) в трех состояниях термообработки 1) закалка перед сваркой 2) закалка и двухступенчатое старение перед сваркой 3) закалка и двухступенчатое старение после сварки. Проведены радиографический контроль сварных соединений, металлографический и фрактографический анализы. Механические свойства при растяжении и характеристики разрушения определены на поперечных сварных образцах в интервале от комнатной температуры до 4,2 К.  [c.311]

В. С. Островского, А. М. Сигарева и Г. А. Соккера Ядерный графит (1967 г.), являющейся первой монографией на русском языке, посвященной конструкционному графиту для атомной техники, приведены способы его производства, описана кристаллическая и пористая структура и электронные, термодинамические и механические свойства, а также взаимодействие графита с некоторыми элементами и соединениями, освещено поведение реакторного графита различных зарубежных марок при облучении сравнительно небольшими дозами.  [c.7]

Характерной особенностью дефектной структуры облученных кристаллов являются хаотичность в расположении точечных и объемных барьеров и неоднородность создаваемых ими полей напряжений. Но нельзя считать распределение дефектов в кристаллах изотропным. На начальной стадии облучения кристаллов наблюдается сильная анизотропия в распределении радиационных дефектов и анизотропия влияния радиации на механические свойства в )азличных кристаллографических направлениях. О. А. Троицкий 151 на монокристаллах цинка обнаружил в плоскостях базиса более высокую скорость накопления радиационных дефектов и большее влияние радиации на сопротивление движению дислокаций в базисных плоскостях по сравнению с другими кристаллографическими плоскостями. В. К. Крицкая с сотрудниками [16] по изменению интегральных интенсивностей рентгеновских рефлексов обнаружила ориентационную зависимость в распределении радиационных дефектов в облученных электронами монокристаллах молибдена и как следствие — анизотропию величины эффекта повышения сопротивления деформированию в различных кристаллографических направлениях монокристаллов молибдена.  [c.63]


В работе [72] определялись прочностные характеристики при 20° С образцов ниобия и ванадия, облученных при 600—1300 С до интегральной дозы 3,7 10 н/см . Обнаружено незначительное возрастание пределов текучести и прочности по сравнению с необлу-ченным состоянием вплоть до 1000° С и резкое увеличение этих характеристик после облучения при 1100° С. В этой же области температур наблюдался максимум прироста электросопротивления от температуры облучения ниобия. Данные электронно-микроскопических исследований, электросопротивления и механических свойств облученных образцов в области порядка 0,5 T j, свидетельствуют о качественном изменении характера дефектообразования по сравнению  [c.78]

Изучены также механические свойства и структура стали после ВТМО (8 — 35%, у р = 1м/с при 900° С). Физические причины, определяющие увеличение прочности при ВТМО, заключаются в повышении плотности дислокаций в мартенсите й дроблении его кристаллов йа отдельные фрагменты величиной в доли микрона с взаимной разорнентировкой до 10—15°. В стали формируется определенная субструктура полигонизации (рис. 8, г). Дислокационные границы такого типа отчетливо видны на электронных микрофотографиях. Фрагментация кристаллов мартенсита обнаруживается при сопоставлении электронограмм. У сталей, легированных элементами, вызывающими эффект вторичного твердения (ванадием, молибденом, вольфрамом), упрочнение может быть  [c.20]

Итак, в течение первого этапа новейшей революции в естествознании все яснее обнаруживалось, что в основе материи лежат не механические свойства, в частности связанные с механической массой, а более сложные свойства, свидетельствующие об электромагнитном характере материи, и что сама масса (например, у фотона и в значительной степени у электрона) может иметь электромагнитное происхождение. По мере того как такие представления завоевывали признание, все быстрее рушилась старая, механическая картина мира и на ее место все увереннее становилась новая, электромагнитная его картина. В выработке новой физической картины мира, синтетически связывающей все важнейшие достижения физики и других естественных наук, сделанные на рубеже XIX и XX вв. и в  [c.456]


Смотреть страницы где упоминается термин Электрон Механические свойства : [c.345]    [c.108]    [c.433]    [c.53]    [c.12]    [c.132]    [c.357]    [c.171]    [c.69]    [c.460]    [c.249]    [c.155]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.453 ]



ПОИСК



189 —Механические свойства электронным лучом — Механические свойства 247 — Типы



© 2025 Mash-xxl.info Реклама на сайте