Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Никелевые сплавы механические свойства

Химические составы жаропрочных сплавов на никелевой основе, механические свойства при комнатных и высоких температурах и режимы их стандартной термической обработки указаны в табл. 39, 40 и на рис. 1, 45—51.  [c.183]

Сплавы на железоникелевой и никелевой основах, механические свойства, кн. 1, табл. 8.27 Сплавы на основе циркония  [c.622]

Первая группа элементов при легировании никеля образует твердый раствор замещения до тех пор, пока период кристаллической решетки не достигнет 0,370 - 0,388 нм. Дальнейшее легирование элементами Сг, Мо, W приводит к образованию в структуре сплава интерметаллидных соединений - плотно упакованных фаз, присутствие которых, как правило, снижает механические свойства, Следовательно, количество элементов первой группы должно быть таким, чтобы период решетки никелевого твердого раствора не превысил указанных значений. При этом прочностные характеристики однофазных сплавов в литом состоянии следующие <7в = 588 МПа a-j = 294 МПа. Период решетки твердого раствора на основе никеля при легировании изменяется по уравнению п  [c.411]


Таблица 3.19. Механические свойства медно-никелевых сплавов [3,24] Таблица 3.19. Механические <a href="/info/126033">свойства медно</a>-никелевых сплавов [3,24]
Таблица 3.21. Механические свойства жаропрочных никелевых и кобальтовых сплавов [3,24] Таблица 3.21. <a href="/info/59236">Механические свойства жаропрочных</a> никелевых и кобальтовых сплавов [3,24]
Механические свойства некоторых литых никелевых жаропрочных сплавов при повышенных температурах  [c.285]

КОРРОЗИОННАЯ СТОЙКОСТЬ, СТРУКТУРА II МЕХАНИЧЕСКИЕ СВОЙСТВА НИКЕЛЕВЫХ СПЛАВОВ И ЛОПАТОК ГТУ С ЭЛЕКТРОННО-ЛУЧЕВЫМИ ПОКРЫТИЯМИ  [c.179]

Рассмотрены вопросы механики разрушения конструкционных материалов при низких температурах. Описаны результаты исследования механических свойств, чувствительности к надрезу, характеристик разрушения ряда алюминиевых, титановых, никелевых сплавов и сталей, а также некоторых композиционных материалов при низких температурах, вплоть до температуры жидкого гелия (4 К). Дана оценка свойств сварных соединений ряда сплавов при низких температурах.  [c.4]

В последующих разделах статьи механические свойства исследованного сплава сравниваются со свойствами нержавеющей стали 304 и никелевой стали с 9 % Ni. Сравниваемые сплавы были изготовлены в промышленных условиях и термообработаны в соответствии с существующими рекомендациями [2] по режимам, обеспечивающим оптимальную вязкость при низких температурах. Нержавеющую сталь аустенитного класса марки 304 нагревали при 1293 К в течение 1 ч и охлаждали в ледяном солевом растворе. Сталь с 9 % N1 обрабатывали по режиму нагрев при 1173 К, 2 ч, охлаждение на воздухе+нагрев при 1063 К, 2 ч, охлаждение на воздухе+нагрев при 823 К, 2 ч, охлаждение в воде.  [c.347]

ИЗМЕНЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ НИКЕЛЕВЫХ СПЛАВОВ  [c.302]


Данные о влиянии экспозиции на механические свойства пяти никелевых сплавов приведены в табл. ПО. Механические свойства сплавов Ni—Fe— r 825 и Ni—Mo— r С не изменились. Однако наблюдали значительные уменьшения относительного удлинения сплавов Ni— r—Fe 600, Ni—Fe— r 902 и Ni—Be. 1/2 HT.  [c.309]

Монель-металл — медно-никелевый сплав серебристого цвета с содержанием 70% никеля, 25,5% меди, 3% железа и 1,5% марганца. Он не подвержен атмосферной коррозии, воздействию минеральных масел и обладает относительно высокими механическими свойствами при высокой температуре. Как прокладочный материал монель-металл применяется для соединения трубопроводов, транспортирующих агрессивную среду при давлении до 100-10 Н/м  [c.39]

Основные механические свойства и область применения никелевых и медно-никелевых сплавов  [c.193]

Используемое в промышленности естественное и искусственное старение сплавов, сопровождающееся выделением кристаллов новых фаз, является одним из основных методов улучшения определенных свойств некоторых сплавов, например повышения механической прочности алюминиевых, медных и никелевых сплавов, повышения жаропрочности никелевых, увеличения коэрцитивной силы медных сплавов и т. д.  [c.9]

Рис- 40. Зависимость механических свойств окалиностойких сплавов на никелевой  [c.178]

Механические свойства и режимы термической обработки жаропрочных никелевых сплавов  [c.185]

Рис. 45. Зависимость механических свойств жаропрочных сплавов на никелевой основе от температуры Рис. 45. Зависимость <a href="/info/59236">механических свойств жаропрочных</a> сплавов на никелевой основе от температуры
В промышленности также находят применение сплавы на основе карбида хрома [3] с никелевой связкой (10—40%). Эти сплавы не окисляются на воздухе до 1000° С, обладают высокой коррозионной устойчивостью в различных агрессивных средах, а также высокой эрозионной стойкостью и сопротивлением износу при комнатной и повышенных температурах, в несколько раз превышаюш,их стойкость нержавеющей стали. Ниже приведен пример высоких физических и механических свойств одного из подобных сплавов  [c.423]

Химический состав, физико-механические свойства технологические характеристики медно-никелевых сплавов для технических резисторов  [c.256]

Химический состав, физико-механические свойства и технологические характеристики никелевых и медно-никелевых термоэлектродных сплавов  [c.256]

Для изготовления сварных емкостей, работающих ири повыиюн-ных температурах в соляно-кислых средах, концентрированных растворах серной и фос([ )рной кислот, применяют никелевый сплав Н70МФ (0,02 % С, 25—27 % Мо и 1,4—1,7 % V). После закалки с 1070 °С в воде, сплав состоит из а-фазы с г. н. к. реишткой и ие-болыного количества карбидов М С и V . Механические свойства сплава 5 800 МПа, 370 МПа и Й 40 %. Д.пя этой же  [c.284]

На рис. 13.18 показаны диаграммы ползучести и механические свойства никелевого сплава ХН77ТЮ, на рис. 13.19 — его микроструктура.  [c.222]

Так как бинарные никелево-молибденовые сплавы имеют плохие физико-механические свойства (низкая пластичность, плохая обрабатываемость), то в них вводят Другие элементы, например железо, для создания тройных или многокомпонентных сплавов. Они тоже довольно трудно обрабатываются, но все же заметно легче, чем двухкомпонентные. В соляной и серной кислотах стойкость этих сплавов выше, чем никеля, однако в окислительных средах (например, в азотной кислоте) повышения стойкости не отмечается. Коррозионный потенциал сплавов Ni—Мо—Fe лежит в акт11вной области, поэтому на них образуется питтинг в сильнокислых средах, в которых эти сплавы обычно исполЬ зуют на практике.  [c.362]


BOB на основе никеля. Сплавы ЖС и ВЖЛ широко используют в современных газотурбинных авиационных двигателях (см. табл. 5) из них изготавливают лопатки и диски турбин, направляющие лопатки и камеры сгорания газотурбинных двигателей. Использование сложнолегированных никелевых сплавов позволило повысить температуру газов на входе в турбину с 800 до 1000°С, что привело к значительному повышению мощности, тягового усилия, скорости, уменьшению топлива, увеличению ресурса и надежности работы ГТД. Физико-механические свойства этих сплавов широко освещаются в разд. III.  [c.37]

Замечательные механические свойства мартенситно-стареющей 18%-ной никелевой стали ВКС отечественной разработки позволяют применять ее при изготовлении пресс-форм для литья деталей сложных конфигураций, когда к пресс-форме предъявляются повышенные требования по разгаростойкости. Одной из областей применения этих сталей является использование их для высоконагру-женных стержней пресс-форм литья под давлением алюминиевых сплавов [3].  [c.58]

В настоящее время возможности повышения жа юпрочности никелевых сплавов с равноосной структурой за счет их легирования тугоплавкими металлами приближается к пределу. Таким образом, от кристаллического строения лопаток зависят механические свойства и жаропрочность при высоких температурах.  [c.418]

Никелевые покрытия и плакирующие сплавы на основе никеля используют в зарубежной практике для защиты от коррозии элементов оборудования глубоких нефтяных скважин (труб, вентилей). В работе [48] приведены результаты испытания труб, изготовленных из стали марки AISI 4130 с плакировкой никелевым сплавом 625, полученных методом горячего изостатического прессования. Толщина плакирующего слоя биметалла составляла 29 и 4 мкм. Испытания включали анализ изменения механических свойств материалов после вьщержки в хлорсодержащей среде в присутствии сероводорода, оценку стойкости их к коррозионному растрескиванию и питтинговой коррозии. Результаты лабораторных и промышленных испытаний показали высокие эксплуатационные свойства биметалла при использовании в качестве конструкционного материала для оборудования высокоагрессивных сероводородсодержащих глубоких скважин.  [c.96]

Металлид П1зА1 превосходит промышленные никелевые сплавы по жаростойкости, но отличается от них малыми прочностью (Ов=300-р -Ь400 МПа) и пластичностью. Легирование его хромом, вольфрамом, титаном и другими элементами позволяет улучшить механические свойства даже при наличии примесей (до 0,003 % каждой) серы, фосфора, свинца, висмута и сурьмы (табл. 85).  [c.189]

В табл. 12—21 и на фиг. 28—34 приведены данные о химическом составе физических, механических и технологических свойствах коррозионпостойких никелевых сплавах.  [c.273]

Несоответствие механических свойств при кратковременных и длительных нагружениях наблюдается часто. Вместе с тем особо хрупкое состояние тела зерна, проявляющееся при кратковременном нагружении, может привести к преждевременному разрушению при длительном нагружении. Это наблюдалось, например, в высоколегированном никелевом сплаве ЖС6У в состоянии непосредственно после закалки при нагружении при температуре 800°С. При этой температуре в сплаве после закалки происходит интенсивный распад твердого раствора, большое количество частиц основной упрочняющей -фазы является препятствием для движения дислокаций, кроме того, на границах и в теле зерен имеются выделения игольчатой формы [68]. В не-термообработанном сплаве при этой же температуре испытания интенсивного распада не наблюдается. В Условиях нагружения (7=0,55 ГH/м , t=800° время жизни образцов с трещиной в термообработанных образцах составляло 20—30% общей долговечности, в литых 55—60%, при этом полная долговечность увеличивалась примерно в 10 раз. Фрактографическое исследование показало, что разрушение литых образцов от разрушения термообработанных образцов отличается в основном степенью пластичности процессов деформирования и разрушения в теле зерна, что выявилось при исследовании изломов в зоне долома и при однократном нагружении (рис. 61).  [c.89]

Высокая коррозионная устойчивость и хорошие механические свойства никеля передаются и его сплавам, что позволяет использовать его в сочетании с другими легирующими компонентами для изготовления коррозионно-устойчивых радиаторов, нагревателей, реакторов, реакционных камер, труб, насосов и клапанов в химической промышленности, окалиноустойчивых и термоустойчивых деталей в энергетических установках, турби-ностроении и при строительстве промышленных печей. Никелевые покрытия имеют массовое применение. Дальнейшее совершенствование технологии получения никеля значительно расширит области его применения.  [c.141]

Изучались алюминиевые, титановые, никелевые сплавы и нержавеющие стали. Отливки из алюминиевого сплава А-356 (стержни размерами 380x51 X Хб мм) закаливали в воде от температуры 811 К (выдержка 10 ч) и подвергали старению 16 ч при комнатной температуре и при 427 К 4 ч. Сплавы 6061-Т6 и 7075-Т6 были исследованы в виде листов толщиной 6 мм. Листы из нержавеющей стали 347 испытывали в го-чекатаном состоянии с последующим отжигом и травлением. Нержавеющая сталь 410 закаливалась в масле от температуры 1255 К и отпускалась при 839 К. Нержавеющую сталь А-286 в виде горячекатаных и травленых плит закаливали на воздухе от 1255 К (выдержка 1,5 ч) и старили при 1005 К в течение 16 ч. Титановый сплав имел очень низкое содержание примесей. Его испытывали после горячей прокатки н отжига. Образцы сплава Hastelloy С вырезали из листа толщиной 6 мм и испытывали после обработки на твердый раствор в соответствии с AMS-5530-С. Холоднокатаный и травленый лист толщиной 6 мм из сплава In onel Х-750 был состарен при 977 К в течение 20 ч с последующим охлаждением на воздухе. Образцы из сплава D-979 вырезали из штамповок для дисков турбины. В табл. 1 приведены механические свойства этих материалов при комнатной температуре.  [c.93]


Никелевый жаропрочный сплав In onel Х750 аустенитно-го класса очень широко используют для жаровых труб, экранов, наружных обшивок корпусов и валов сверхпроводящих генераторов мощностью 5 МВт, разработанных компанией Вестннгауз [1,2]. Для оценки поведения безопасно повреждаемой конструкции такого генератора проведены исследования характеристик разрушения и механических свойств указанного сплава при низких температурах в зависимости от технологии изготовления и режимов термообработки. Изучено влияние трех промышленных методов выплавки и горячего изостатического прессования, а также двух видов термообработки закалки и закалки с последующим двухступенчатым старением.  [c.298]

Предварительные замечания. В предыдущих параграфах главы обсуж-дспы многие общие особенности структуры и свойств металлов и сплавов. У отдельных металлов или сплавов имеется ряд специфических свойств, знать которые необходимо инженеру, занимающемуся проблемой надежности, при проектировании тех или иных конструкций, В настоящем параграфе остановимся па некоторых особенностях наиболее важных для техники металлов и сплавов. К их числу относятся железоуглеродистые сплавы (стали, чугуны), алюминиевые, магниевые, сверхлегкие, медные, никелевые сплавы, титан и его сплавы, цирконий и его сплавы, бериллий, тугоплавкие металлы и их жаропрочные сплавы. Некоторые механические и упругие характеристики семи чистых металлов приведены в табл. 4.11.  [c.318]

Химический состав никеля, скорости и типы коррозии, а также изменения механических свойств, вызванные коррозией, приведены в табл. 102—104 те же данные для Ni—Си-сплавоа — в табл. 105—107 для никелевых сплавов — в табл. 108—ПО. Данные о стойкости коррозии под напряжением — в табл. 111.  [c.279]

Химический состав никелевых сплавов приведен в табл. 108, скорости коррозии и типы коррозии —в табл. 109, а изменения их механических свойств, вызванные коррозией — в табл. ПО. Не наблюдали значительных потерь массы (скорости коррозии не превышали 0,0025 мм/год) или видимой коррозии у всех перечисленных нилсе сплавов Ni—Сг—Fe 718, несварных и сварных образцов Ni—Сг—Мо 625, несварных и сварных образцов Ni—Мо—Сг С и 3 Ni—Сг—Fe—Мо F и G Ni—Сг— Со 41. У сплавов Ni—Fe—Сг 804, 825Nb и 901 Ni—Со—Сг 700 Ni—Сг—Fe—Мо X. Скорости коррозии не превышали 0,0025 ми/год и наблюдались только отдельные случаи начальной щелевой коррозии.  [c.306]

Механические свойства и режимы термической обработки скалиностойких сплавов на никелевой основе  [c.178]

Влияние различных способов выплавки на показатели качества и некото рые механические свойства жаропрочного сплава на никелевой основе даны на рис. 70 (свойства металла обычной дуговой плавки приняты за 100). Несомненно положительное влияние переплавных способов на содержание газов в металле (уменьшение на 50%) и устранение ликвационной неоднородности и дефектрв. Характерно повышение пластичности в условиях горячей деформации (на 30—70%) и в особенности при рабочих температурах (в 2 раза). Способ "производства сплава отражается и на длительной прочности (время до разрыва при а = onst при 900° С увеличивается на 18—45%), но практически не влияет на кратковременную прочность. ,  [c.167]

Рис. 70. Относительный уровень показателей качества и механических свойств сплава на никелевой основе при различных методах выплавки (ОД — открытая дуговая плавка ВД — вакууто-жуговая ОИ открытая индукционная АЯ — вакуумнр-индукционная ЭШ —. электрошлаковый переплав) Рис. 70. Относительный <a href="/info/305692">уровень показателей качества</a> и <a href="/info/57675">механических свойств сплава</a> на никелевой основе при различных методах выплавки (ОД — открытая дуговая плавка ВД — вакууто-жуговая ОИ открытая индукционная АЯ — вакуумнр-индукционная ЭШ —. электрошлаковый переплав)
Сплавы никелевые ТБ — Физико-механические свойства 4 — 228 Химический состаз  [c.274]

Кадмиевые сплавы обладают высокими механическими свойствами, но недостаточно коррозиеустойчивы, особенно кадмиево-никелевые кроме того, ввиду высокой их твёрдости поверхность цапфы должна быть закалённой (// >250).  [c.634]

Бронзы алюмнниево-железно-никелевые Бр АЖН 10-4-4 и Бр АЖН 11-6-6 в ряде случаев являются прекрасными заменителями вы-сокооловянистых бронз типа Бр ОЦ 10-2. Они обладают чрезвычайно высокими механическими свойствами, износоупорностью и жаростойкостью. Из них изготовляются ответственнейшие бронзовые детали в авиамоторостроении (седла клапанов, направляющие втулки выпускных клапанов, работающих при температурах до 500 С и больших удельных давлениях и скоростях), ответственные детали в специальном машиностроении (шестерни для сверхмощных кранов и мощных турбин, бронзовые червяки, работающие в паре со специальными сталями и пр.). Сплав Бр АЖН 10-4-4 поддаётся облагораживанию и применяется для фасонного литья и для обработки давлением. Бронза Бр АЖН 11-6-6 применяется исключительно для фасонного литья .  [c.123]

Химический состав оловянного порошка (241). Гранулометрический состав оловянного порошка (241). Химический состав кобальтового порошка (241). Химический состав электролитического никелевого порошка (241). Химический состав серебряного порошка (242). Гранулометрический состав серебряного порошка (242). Примерное назначение стандартных металлических порошков (242). Классификация метаплокерамических изделий (244). Условное обозначение железографита (247). Физико-механические свойства желе-зографита (247). Примерное назначение железографита (248). Характеристика фрикционных желез ографитовых материалов (249). Физико-механические свойства фрикционных металлокерамических материалов, разработанных ЦНИИТмаш (249). Физико-механические свойства фрикционных металлокерамических сплавов (250). Физико-механические свойства металлокерамических конструкционных материалов (252). Физико-механические свойства металлокера- шческих контактных материалов (253). Технологические режимы изготовления типовых металлокерамических изделий (254). Реншмы токарной обработки металлокерамических изделий (255).  [c.536]


Смотреть страницы где упоминается термин Никелевые сплавы механические свойства : [c.4]    [c.189]    [c.244]    [c.381]    [c.75]    [c.32]   
Морская коррозия (1983) -- [ c.302 , c.309 ]



ПОИСК



189 —Механические свойства сплавов Д-16 и Д-20 — Механические свойства

Жаропрочные сплавы на никелевой поставляемого полуфабриката 330 Марки 326—327 — Механические свойства 328—329 — Назначение 326 Химический состав

Механические свойства и примерное назначение никелевых и медноникелевых сплавов

Никелевая Механические свойства

Никелевые сплавы

Никелевые сплавы-см. Сплавы никелевые

Основные механические свойства никелевых и медноникелевых сплавов

Свойства никелевая

Сплавы Механически:: свойства

Сплавы Механические свойства

Сплавы никелевые ТБ - Физико-механические Свойства

Ч никелевый



© 2025 Mash-xxl.info Реклама на сайте