Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химический Механические свойства - Влияние температуры

Целью данной работы было представить неопубликованные еще данные и подытожить результаты исследований титановых сплавов при низких температурах. Программой настоящей работы были предусмотрены проведение отборочных испытаний исследование влияния незначительных изменений в химическом составе, в частности примесей внедрения на механические свойства оценка влияния холодной прокатки и термообработки на механические свойства выбранных на первом этапе сплавов.  [c.268]


Для большинства керамических материалов при нагружении справедлив закон Гука. Изделия из керамики работают обычно в условиях высокой температуры, под влиянием которой изменяются ее механические свойства. С повышением температуры модуль упругости керамических материалов снижается. Количественное описание этого явления зависит от химического состава керамики, который отличается большим разнообразием [9].  [c.24]

Механические характеристики материалов зависят от многих факторов. На свойства металлов и сплавов существенное влияние оказывают химический состав, технология их получения, термическая и механическая обработки, условия эксплуатации — температура, среда, характер нагрузки и др.  [c.111]

Влияние различных факторов на механические свойства материалов. Экспериментами установлено, что при повышении скорости нагружения и скорости деформирования повышаются предел текучести и предел прочности. При повышении температуры особенно ощутимой является ползучесть (см. 3.9). При высоких температурах более явственными становятся вязкие (пластические) свойства, тогда как при пониженных температурах наблюдается охрупчивание. Существенно влияние на механические свойства металлов химического состава. Например, малые легирующие добавки (хром, никель, молибден и др.) изменяют механические свойства сталей, дают возможность создавать материалы с высокой проч-  [c.142]

Температура оказывает существенное влияние на механические свойства стали. С повышением температуры показатели прочности стали снижаются, а показатели пластичности возрастают. Характер изменения свойств определяется химическим составом и структурой стали. С понижением температуры пластичность и особенно ударная вязкость стали снижаются.  [c.221]

Влияние иа механические свойства материала изменения химического состава, режимов термической обработки, горячей деформации и других факторов в первую очередь проверяют по результатам кратковременных испытаний на растяжение при комнатной температуре гладких образцов, когда возникают (в большинстве случаев) вязкие (пластичные) изломы. При таких исследованиях фрактографический анализ может дать весьма ценные сведения.  [c.23]

Существенное влияние на скорость коррозии в газовой атмосфере оказывают физико-химические и механические свойства образующихся продуктов. При контакте с воздухом даже при обычной температуре на поверхности металла образуется тонкая окисная пленка. В зависимости от условий образования окисные пленки могут быть мономолекулярными или достигать толщины порядка нескольких миллиметров.  [c.13]


Влияние холодной дефор-мации при прокатке. Для ис- следования влияния холодной деформации при прокатке на механические свойства при комнатной и низких температурах были использованы несколько сплавов титан промышленной чистоты марок 45А и 75А, сплавы Ti—ЗА1 и Ti—5А1—2,5Sn. Химический состав исследованных сплавов и степень холодной деформации приведены в табл. 1. Результаты испытаний даны в табл. 4 и в работе [15], а также представлены на рис. 5.  [c.279]

В результате отборочных испытаний были отобраны сплавы с наилучшими свойствами для дальнейшего исследования влияния химического состава, холодной деформации при прокатке и режимов термообработки на механические свойства. Выло изучено влияние незначительных изменений в химическом составе, в частности содержания примесей на свойства сплавов Ti—5А1—2,5Sn и Ti—6А1—4V. Влияние холодной деформации при прокатке на механические свойства исследовано на Ti-45A, Ti-75A, Ti—ЗА1 и Ti—5А1—2,5Sn влияние режимов термической обработки—на сплавах Ti—6А1—4V, Ti—8А1—2Nb—ITa и Ti—13V—1 I r—ЗА1. По результатам испытаний сделан вывод, что несколько титановых сплавов обладает необходимыми механическими свойствами для их применения при низких температурах наиболее приемлемыми и перспективными для использования при 20 К являются Ti-45A HTi-5Al-2,5Sn ELI.  [c.288]

Старение полимерных материалов. Физико-химические свойства полимеров (предел прочности при растяжении, сопротивление пластической деформации, температура размягчения, эластичность и др.) определяются их химическим составом и структурой. Структура полимеров характеризуется областями кристаллического и аморфного строения, формой и степень подвижности цепей, величиной и характером сил, действующих между цепями, степенью сшивания цепей (образования поперечных связей). Поперечные связи ограничивают движение цепей относительно друг друга и оказывают большое влияние на физические свойства полимеров. С ростом числа поперечных связей уменьшается растворимость полимеров, ухудшаются механические свойства, характерные для линейных полимеров эластичность, вязкость и др. Свойства сшитых полимеров аналогичны свойствам полимеров с трехмерной структурой.  [c.17]

Механические свойства — Влияние температуры 4—121 Физико-механические свойства 4—120 — Химический состав 4—116  [c.22]

Механические свойства 3 — 403 — Влияние величины зерна 3 — 408 — Влияние веса и зоны слитка 3—409 — Влияние дополнительных деформаций 3 — 410 —Влияние низких температур 3—410 — Влияние обработки поверхности 3 — 411 — Влияние отпуска 3 — 410 — Влияние химического состава 3 — 409 — Микроструктура 3 — 408  [c.221]

Модифицирование снижает влияние изменений температуры заливки металла в форму и колебаний его химического состава (см. рис. 1 и 2) на механические свойства, что улучшает технологичность ковкого чугуна. Необходимо учитывать, что эффективность воздействия модификаторов на механические свойства ковкого чугуна и уменьшение продолжительности отжига зависят от времени пребывания металла в ковше перед разливкой (рис. 12). При чрезмерном его увеличении эффект модифицирования резко снижается.  [c.128]

Изнашивание металлов и неметаллов зависит не только от физикомеханических характеристик материалов, но главным образом от механических свойств защитных пленок, которые удаляются и вновь воспроизводятся на металле, оказывая влияние на интенсивность изнашивания сопрягаемых пар трения. Механические свойства защитных пленок и скорость их воспроизводства зависят в основном от коррозионной активности среды, химического состава металла, чистоты поверхности металла, от количества и способа подвода среды к поверхности трения и от температуры среды.  [c.205]

Тепломассообмен, а) Внутри материала — определяется его теплофизическими, массообменными и структурно механическими свойствами, а также связью влаги с материалом и температурой равновесного испарения. На процесс испарения влаги внутри материала могут оказывать влияние растворимые вещества, возможные химические превращения и добавки поверхностно-активных веществ.  [c.636]


Физико-химические закономерности образования структуры при спекании материалов, содержащих железо и графит, изучены достаточно подробно. Большое влияние на механические свойства получаемых изделий оказывает температура спекания, так как при ее повышении увеличивается скорость науглероживания металлической основы, что приводит к повышению прочности и твердости изделий.  [c.39]

Химический состав 656, 657 Штамповые стали для ударных инструментов — Влияние температуры испытаний на механические свойства 650, 653, 654  [c.686]

При сварке легированными проволоками сплошного сечения на спокойном воздухе подавление вредного влияния азота и кислорода (попадающих при сварке открытой дугой на воздухе) на плотность и механические свойства металла шва главным образом достигается путем введения в состав проволок легирующих элементов (А1, Ti, Се и др.), имеющих большое химическое сродство к указанным газам и образующих с ними прочные нитриды и оксиды с высокой температурой плавления.  [c.58]

Для выявления способности черного или цветного металла к деформации в горячем состоянии пользуются характеристиками механических свойств, определяемыми при испытаниях на растяжение при повышенных температурах (до 1200° С) по ГОСТ 9651—73, результатами испытаний по определению ударной вязкости ан при нормальных (ГОСТ 9454—60) и повышенных (ГОСТ 9456—60) температурах. Кроме того, учитывают влияние на изменение химического состава и фазовых превращений металла или сплава исходного структурного состояния, температуры, схемы напряженного состояния, степени и скорости деформации на изменение механических свойств металла в процессе горячей деформации.  [c.41]

Сопротивление деформированию инструментальных Сталей в основном зависит от процентного содержания углерода. Чем больше в них углерода, тем ниже пластичность и выше сопротивление деформированию. Наличие в этих сталях вредных примесей (особенно серы и фосфора) приводит к понижению пластичности из-за появления красно- или синеломкости. Влияние легируюш,их элементов иа пластичность и механические свойства инструментальных сталей происходит вследствие замещения в решетке атомов железа атомами легирующего элемента. На основе физико-химических (коэффициента теплопроводности, температуры фазовых превращений и др.) и механических свойств (пластичности, сопротивления деформирования устанавливают температурный режим нагрева металла под ковку, температуру начала и конца ковки, выбор схемы процесса ковки и формы бойков, а также степень и скорость деформации.  [c.495]

Решающее влияние на качество непрерывного слитка оказывает р жим вторичного охлаждения — распределение интенсивности охлаждения по длине и периметру непрерывного слитка. Практика непрерывной разливки показывает, что одним из основных дефектов непрерывного слитка являются горячие трещины, в основном связанные с физико-механическими свойствами отливаемой стали при температурах, близких к температуре интервала кристаллизации. В работе [233, с. 5, 145, 212] было установлено, что сильное влияние на эти свойства оказывает химический состав стали. По данным [234], наибольшей склонностью к образованию трещин обладает сталь с 0,16—0,18% С. Отрицательно влияет повышение содержания углерода, серы и фосфора, а также некоторых легирующих элементов.  [c.182]

Было установлено, что основной металл разрушенной трубы по химическому составу соответствовал техническим условиям, однако имел пониженную ударную вязкость (при 0°С — 4,05 кгм/см , а при минус 40°С — 3,3 кгм/см , тогда как техническими условиями регламентируются значения не менее 8 и 3,5 кгм/см соответственно). Металл продольных заводских швов по химическому составу также соответствовал требованиям технических условий, а по механическим свойствам (особенно металл ремонтных швов) имел недопустимо высокое временное сопротивление разрыву (до 750 МПа при максимально допустимых по техническим условиям 690 МПа) и низкую пластичность (относительное удлинение для ремонтных швов составляло 2,9% при минимально допустимых 18%, а ударная вязкость при температурах 0 и минус 40°С — 1,45 и 0,69 кгм/см соответственно. В заводских продольных швах имелось много микропор и мелких шлаковых включений, являющихся источниками зарождения микротрещин, величина которых, однако, соответствовала техническим условиям. Металл поперечного монтажного шва содержал хрома на 0,18% больше верхнего допустимого предела и имел неудовлетворительные характеристики пластичности (ударная вязкость при температуре 0°С — 4,96 кгм/см а при минус 40 С — 1,36 кгм/см ). В связи с повышенной чувствительностью стали 14Г2САФ к перегреву в заводских продольных ремонтных швах и поперечных автоматических монтажных швах присутствовали участки металла с крупными ферритными зернами, а в зоне термического влияния — участки с мартенситной структурой. Эти участки металла имели низкую стойкость к коррозионному растрескиванию.  [c.59]

Образующаяся на поверхности труб поверхностей нагрева оксидная пленка имеет, как правило, хорошие защитные свойства, прочно связана с трубой и способна изолировать металл от прямого действия пара, а также относительно стойка к внешним химическим и механическим воздействиям. Внешние химические воздействия на оксидный слой связаны со свойствами водяного пара, например содержанием кислорода, разнородных солей и других компонентов. Причинами механического воздействия являются колебания температуры, вибрация труб, различия в линейных коэффициентах термического расширения металла и его оксида и т. д. Определенное влияние на защитные свойства оксидной пленки имеет и критерий Пиллинга — Бедуорта.  [c.127]


Сложность и многообразие физико-механических процессов, протекающих в деформируемом теле, приводят к многозначным конечным результатам, которые проявляются в. виде неожиданного разрушения или неоправданно высокого механического сЛротивлепия, Пра1вильное объяснение поведения материала под нагрузкой и, что более важно, предсказание этого поведения возможны лишь после выяснения физической сущности протекаемых процессов. В связи с этим такие широко известные эксплуатационные факторы, как степень сложности напряженного состояния, скорость деформирования, широкий диапазон температур, степень физико-химической активности окружающей среды и др., должны рассматриваться с точки зрения влияния их на структурную основу материала и через нее на наблюдаемые механические свойства.  [c.3]

Механические свойства композиционных материалов и их составных частей меняются под влиянием окружающей среды и химического старения, особенно при изменении температуры н под действием воды (водяных паров) на полимерные композиты (см., например, Фрид [33], Стил [111], Цай [118]). Такие эффекты часто необратимы и приводят к изменению свойств материала со временем. Мы интересуемся здесь только способом, которым можно учесть эти влияния в определяющих уравнениях вязко-упругого материала. Детальное обсуждение физического и химического механизмов, приводящих к подобным изменениям, а также математическое их описание остаются вне рамок настоящей главы.  [c.129]

При теплостатических испытаниях неметаллических материалов, которые проводятся в таких же автоклавах, что и коррозионные испытания, исследуется влияние длительного воздействия рабочих условий (температура, давление) на структуру и физико-механические свойства. Изучается изменение во времени твердости, размеров, прочности на сжатие, конструкционной прочности. Кроме того, на всех образцах определяется изменение массы и линейных размеров, химического состава поверхностного слоя, а также оцениваются видимые поверхностные структурные изменения.  [c.226]

Химически модифищ1рованные слои должны иметь прочную связь с основным материалом, низкую прочность на срез и высокую термическую стабильность. Трибохимические слои весьма тонки, однако их влияние на интенсивность изнашивания и нагрузку заедания весьма существенно. Если реакция присадки с поверхностного твердого тела идет при сравнительно низкой температуре или даже при отсутствии трения, то возникает опасность повышенного износа. Необходимо находить область температур, при которой каждая присадка эффективна, и диапазон возможного действия в реальных условиях трения, Трибохимия, механизм действия и эффективность присадок для предотвращения износа и заедания значительно отличаются, так как при заедании главное назначение химически модифицированных слоев — предотвратить возникновение фактического (физического) контакта металлических поверхностей тел даже при возможном повышенном износе. Для уменьшения износа принципиальное значение имеет повышенная прочность химически модифицированных слоев. Средний коэффициент трения скольжения, как показывает опыт, мало зависит от свойств, возникающих на поверхности пленок. Главным влияющим фактором при трибохимических процессах является температура в дискретных точках касания тел, которая приводит к изменению физико-механических свойств контактирующих материалов, уменьшению вязкости масла, активизирует испаряемость и трибохимические процессы на поверхностях тел.  [c.172]

При растопке одного из котлов ПК-41, проработавшего около 12 тыс. ч, на линии БРОУ (быстродействующей редукционно-охладительной установки) были обнаружены две сквозные трещины (рис. 6-22,а), проходящие по зоне термического влияния в месте приварки гильзы для термопары одна продольная длиной около 700 мм, другая, отходящая от нее, кольцевая. Они были расположены на вертикальном участке, изготовленном из труб диаметром 377x10 мм из стали 20. Трубопровод спроектирован на давление среды 6,5 ат и температуру 170° С. Механические свойства и химический состав металла труб соответствовали требованиям ЧМТУ 670-65, по которым были поставлены трубы. Микроструктура состоит из феррита и плотного пластинчатого перлита без следов сфероидизации. Деформации зерен феррита около трещины не отмечается, величина зерна соответствует 5—6 баллам. Трещина развивалась по зернам от внутренней поверхности трубы. Металлургических дефектов вблизи трещины не обнаружено.  [c.295]

Теплостойкость в основном зависит от химического состава материала, нона нее оказывает также влияние и структура материала. Следовательно, температура плавления или рагмягчения увеличивается вместе с возрастанием степени полимеризации, причем так же, как и механические свойства, с определенного момента она возрастает все медленнее (фиг. II. 19). С увеличением температуры плавления, при определенной степени полимеризации можно заметить разделение процесса на два этапа. Во время нагревания полимеров с высокой степенью полимеризации хрупкий материал сначала становится эластичным, каучукоподобным и только при дальнейшем нагревании, часто при значительно более высокой температуре, он начинает плавиться. Температура, при которой наблюдается первое явление, носит название температуры стеклования (размягчения или фазового перехода второго рода) — вторая температура — температура текучести — Гу,  [c.31]

Для изучения влияния температуры перегрева на структуру и механические свойства обычного и синтетического чугунов в индукционной печи промышленной частоты емкостью 6 т сплавы последовательно перегревались до температур 1350, 1400, 1450, 1500 и 1550° С. После достижения требуемой температуры чугун выдерживался в печи в течение 10 мин, а затем отбиралась необходимая для заливки образцов порция металла. Температура заливки образцов была равна 1350—1380° С. В качестве шихтовых материалов использовались чугунная стружка и обрезь динамной стали. Химический состав сплавов и вид обработки приведены в табл. 36. Под перегревом при  [c.134]

Предлагаемая книга посвящена проблеме термической усталосте, т.е процессу появления поверхностных трещин и их постеленного развития вплоть до полного разрушения изделий, работающих в условиях циклических нагревов и охлаждений, сопровождающихся созданием больших градиентов температур по сечению детали. На основе обобщения литературных сведений, данных эксплуатации разнообразногб технологического и энергетического оборудования в ПНР, а также используя собственные производственные и лабораторные исследования, автор сделал попытку установить общие закономерности влияния многочисленных факторов (условий службы, химического состава, структуры и физико-механических свойств материалов) на српротивлен термической усталости конкретных изделий (стальных форм для литья чугунных труб, инструмента горячей и холодной штамповки, прокатных валков, деталей термического оборудования, роторов турбин и др.). При этом приведены практические рекомендации по выбору материалов, термической, химико-терми-ческой и других видов обработки с целью повышения сопротивления усталости изделий, работающих в условиях циклических термических нагрузок. Дано также описание основных методов исследования структуры и свойств материалов при термической усталости.  [c.6]


При термической обработке крупных поковок почти всегда образуются продукты распада переохлажденного аустенита в промежуточной области. Ик количество и характер, а следовательно, и степень влияния на механические свойства, особенно на ударную вязкость и склонность к хрупкому разрушению, определяются химическим составом стали (аустенита), степенью макро- и микроликва-ции, а также действительной скоростью охлаждения с температуры аустенити-зации.  [c.609]

Еще в 1940 г. в ходе освоения производства стали ЗОГ было исследовано влияние режима прокатки на механические свойства. При этом установлено, что степень влияния температуры конца прокатки и величины обжатия на механические свойства листовой стали зависит от толщины листов и химического состава стали (в первую очередь от содержания углерода и марганца). Было показано, что путем правильного регулирования температурь конца прокатки и режима охлаждения листов после прокатки можно повысить механические свойства стали ЗОГ. И. М. Лейкиным было исследовано влияние температуры конца прокатки на свойства стали 15ХСНД [12] полученные при этом результаты приведены в табл. 75.  [c.215]

С целью исследования влияния покрытий на механические свойства сталей были проведены испытания на растяжение при различных температурах (табл. 4.2). Очевидно, что покрытия различного химического состава неоднозначно влияют на механические свойства сталей. Значительную роль играют свойства самих покрытий, в частности, их деформационная способность. Так, с началом процесса накопления деформации на образцах с покрытиями 0,3 нефелин, 0,3 Дл и 0,5 Дл отмечается появление трещин, а при дальнейшем деформировании — отслаивание. Последнее происходит столь интенсивно, что к моменту разрушения образца только на малых участках отмечаются следы покрытия. Хорошо зарекомендовало себя покрытие типа 1М + 0,ЗС. Появление кольцевь1х трещин на данном покрьиии отмечалось только в момент начала образования на образцах шейки. Именно появлением трещин можно объяснить вид диаграммы растяжения, фиксируемый в процессе испытаний (рис. 4.1), когда при нагрузках, превышающих предел длительной прочности, отмечаются ступеньки. Этот процесс повторяется многократно, участки разупрочнения чередуются с участками упрочнения. Аналогичный тип диаграмм был зафиксирован и для образцов с силицидными и боридными покрытиями [19, 98].  [c.60]

До недавнего времени считали, что теплофизические свойства сталей мало меняются в зависимости от их структурного состояния, хотя в общей формулировке известна зависимость свойств, в том числе и тепло-физических, от структуры металла. Поэтому были исследованы основные теплофизические свойства ряда сталей после обработки их в оптимальных для механических свойств режимах ТЦО. Теплофизические свойства, в частности теплопроводность к сплава, определяются следующими его структурными факторами химическим составом, размером и формой зерен, строением границ и ориентацией зерен, ликвацией, стро-чечностью, упорядоченностью твердых растворов и т. д. Имеющиеся в справочной литературе данные о теплопроводности получены в основном для металлов, находящихся в равновесном состоянии после отжига, высокого отпуска, и не отражают в полной мере влияния ТО на теплопроводность. Это привело к распространению мнения о независимости к от режимов ТО. Однако известно, что у закаленных стальных образцов Я на 30—40 % ниже, чем у отожженных. Исследование показало, что в результате ТЦО сплавов в соответствующих режимах к существенно изменяется. В отдельных случаях к снижалась в 2 раза по сравнению с отожженным состоянием сплава. В табл. 3.32 приведены результаты определения к при комнатной температуре ряда сплавов, прошедших стандартный отжиг и СТЦО. В последней колонке  [c.126]


Смотреть страницы где упоминается термин Химический Механические свойства - Влияние температуры : [c.126]    [c.277]    [c.33]    [c.29]    [c.22]    [c.274]    [c.134]    [c.150]    [c.105]    [c.205]    [c.73]    [c.106]   
Машиностроение Энциклопедический справочник Раздел 2 Том 4 (1947) -- [ c.121 ]



ПОИСК



141 — Влияние на свойства

Влияние Влияние температуры

Влияние Химические свойства

Механические свойства при температуре

Температура, влияние на механические

Температура, влияние на механические свойства

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте