Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Моделирование ограничения

Следует отметить, что данный способ моделирования продвижения трещины, основанный на формуле (4.76), имеет ряд особенностей. Так, в случае, когда k = l (наиболее экономичный вариант с точки зрения времени расчета) силы сцепления уменьшаются до Е за время Атс = Ат. При этом положение вершины трещины изменяется скачком на величину AL, а СРТ V однозначно связана с шагом интегрирования Ат. Последнее обстоятельство накладывает существенное ограничение на выбор схемы интегрирования конечно-элементных уравнений движения приходится использовать безусловно устойчивые, но менее точные схемы интегрирования [см., например, уравнение  [c.247]


Перечисленные допущения характерны для функционального моделирования, широко используемого для анализа систем автоматического управления. Элементы (звенья) систем при функциональном моделировании делят на три группы 1) линейные безынерционные звенья для отображения таких функций, как повторение, инвертирование, чистое запаздывание, идеальное усиление, суммирование сигналов 2) нелинейные безынерционные звенья для отображения различных нелинейных преобразований сигналов (ограничение, детектирование, модуляция и т. п.) 3) линейные инерционные звенья для выполнения дифференцирования, интегрирования, фильтрации сигналов. Инерционные элементы представлены отношениями преобразованных по Лапласу или Фурье выходных и входных фазовых переменных. При анализе во временной области применяют преобразование Лапласа, модель инерционного элемента с одним входом и одним выходом есть передаточная функция, а при анализе в частотной области — преобразование Фурье, модель элемента есть выражения амплитудно-частотной и частотно-фазовой характеристик. При наличии нескольких входов и выходов ММ элемента представляется матрицей передаточных функций или частотных характеристик.  [c.186]

Имитационное моделирование реализуется моделирующим алгоритмом, в соответствии с которым в ЭВМ имитируется функционирование исследуемой системы с учетом выбранного уровня детализации для получения нужных характеристик. Эти характеристики выводятся на печать и используются в качестве прямых или косвенных результатов проектирования. Таким образом, в процессе имитационного моделирования конструируется модель проектируемого объекта. На ней проводятся эксперименты с целью изучения закона функционирования и поведения проектируемого объекта с учетом заданных ограничений и целевой функции.  [c.349]

Исходными данными для моделирования являются структурная схема процессора и ограничения ТЗ на ряд параметров (быстродействие, точность и т.д.). Структурная схема дает представление о входящих в его состав блоках и связях между ними. Имитационная модель позволяет представить работу процессора путем абстрагирования способа реализации логических зависимостей (определяемых микропрограммами реализации операций) в виде последовательности выполнения логических операторов. Схе-ма алгоритма моделирования должна быть эквивалентной структурной схеме процессора. По схеме алгоритма производится компоновка отдельных программных модулей, описывающих функционирование реальных блоков процессора, в единую программу. Поскольку обработка элементов программы происходит последовательно, порядок их расположения соответствует распространению исходной информации по всем блокам по мере ее прохождения от входа к выходу. За исходную информацию принимается содержимое всех регистров процессора в начальный момент времени.  [c.355]


Кроме трудностей выразительного плана при ориентации пространственно-графического моделирования на поисковую деятельность, выявляется еще один серьезный недостаток, связанный с ограниченной возможностью использования модели в познавательном процессе.  [c.58]

Дальнейшая детализация и реализация семантической модели в САПР на рис. 6.3 требует изучения и обобщения неформальных процедур конструкторско-технологического проектирования. Включение в САПР полного арсенала эвристических алгоритмов и приемов дает возможность сохранить преемственность с традиционными ПП ЭМП и полностью использовать методы ручного проектирования там, где нет формальных методов. Следует иметь в виду, что сохранение в САПР полного объема неформальных процедур не позволяет существенно улучшить качество проектов, так как сохраняются большинство ограничений, присущих ручному проектированию. Поэтому при автоматизации конструкторско-технологического проектирования следует по возможности на научной основе формализовать как можно больше этапов и процедур, используя для этого современные методы математического моделирования и принятия оптимальных решений, изложенные в предыдущих главах.  [c.165]

Математические модели конструктивных элементов по аналогии с моделями ЭМП на стадии расчетного проектирования целесообразно разрабатывать в двух вариантах быстрые и медленные. Это объясняется тем, что многие элементы для проверки ограничений требуют выполнения большого объема расчетов. Например, при конструировании вала необходимо вести расчеты на прочность и деформацию, определять крутильные и изгибающие колебания, уровень шумов и вибрации, усилия, передаваемые на подшипники, и т. п. Многие из этих расчетов ведутся достаточно точно с помощью громоздких алгоритмов, использующих теоретические методы моделирования и требующих большого машиносчетного времени. Поэтому при оптимизации геометрических размеров элемента следует пользоваться упрощенными (быстрыми) моделями, а для выбранного конечного варианта провести поверочные расчеты с помощью более точных (медленных) моделей.  [c.167]

Рассмотренный подход к математическому моделированию ЭЭС позволяет при сохранении элементной базы произвольно варьировать структурой системы, уточнять или заменять модели отдельных элементов без ущерба для моделей других элементов, наращивать без ограничений библиотеки моделей типовых элементов, т. е. обеспечивает возможность непрерывного развития математических моделей ЭЭС и ее элементов.  [c.227]

Моделирование преобразования когерентных сигналов в электронном тракте осуществляется звеньями 1) усилительным, 2) апериодическим, 3) колебательным, 4) дифференцирующим первого рода, 5) дифференцирующим второго рода, 6) запаздывающим, 7) интегрирующим, 8) линейным, 9) реле, 10) нелинейностью ограничение , 11) нелинейностью общего вида.  [c.148]

В заключение отметим, что вне рамок данного пособия, вследствие ограниченности его объема, остались многие важные задачи теплообмена. В частности, не затронуты методы математического моделирования процессов свободно конвективного теплообмена, теплообмена при фазовых и химических превращениях, методы решения обратных задач и т. д. С ними можно ознакомиться по соответствующим монографиям [1, 16, 19, 21, 23, 33].  [c.5]

Следует заметить, что необходимость удовлетворения (одновременного) различных соотношений между масштабами преобразования физических величин, вытекающая из равенства различных критериев, накладывает серьезные ограничения на возможность точного моделирования. В связи с этим возникает потребность в методах приближенного моделирования.  [c.137]

Есть возможность построить незамкнутую поверхность Безье и использовать ее в топологических операциях с телами. Чтобы не обременять конструктора сложным инструментом поверхностного моделирования, в математическом аппарате пакетов твердотельного моделирования реализованы некоторые упрощенные функции построения поверхностей по образующим линиям. Эти поверхности преобразуются в тела ограниченного объема и могут использоваться в топологических операциях с телами. Например, из любого твердого тела можно вычесть объем, ограниченный  [c.19]


Различные виды анализа, выполняемые в программных системах первой, второй и третьей групп, основаны на классических инженерных подходах к разработке математических моделей поведения изделия при различных воздействиях. В конечно-элементной постановке задачи моделирования исследуемая область предварительно разбивается на ограниченное множество конечных элементов, связанных между собой конечным числом узлов. Искомыми переменными уравнений математических моделей являются перемещения, повороты, температура, давление, скорость, потенциалы электрических или магнитных полей. Эти переменные определяют степени свободы узлов. Их конкретное содержание зависит от типа (физической природы) элемента, который связан с данным узлом. Например в задачах прочностного анализа для каждого элемента с учетом степеней свободы его узлов могут быть сформированы матрицы масс, жесткости (или теплопроводности) и сопротивления (или удельной теплоемкости). Множество степеней свободы, определяющих состояние всей системы в данный мо-  [c.58]

Райс показал, что поскольку плотность энергии деформации есть квадратичная функция деформации, то J = g. Таким образом, взяв J по контуру, лежащему вне любой нелинейной области, можно получить g во многих задачах, не проводя моделирования сложного нелинейного поведения. Более того, в то время как классическая теория разрушения предполагает, что трещина распространяется линейно, использование /-интеграла не связано с таким ограничением. Эта особенность очень полезна при анализе композитов, в которых направление роста трещины может изменяться.  [c.231]

В работе [2J предлагается производить оценку точности определения характеристик сопротивления усталости различными методами с помощью проведения многократных выборок различного объема, из результатов испытаний большого числа образцов и статистической оценки получаемых при этом параметров распределения характеристик сопротивления усталости. Такой подход имеет ограниченные возможности статистического моделирования из-за трудностей получения в большом объеме исходных экспериментальных данных по усталости.  [c.61]

Приведенное понятие приближенного подобия необходимо Б связи с тем, что, как показывает практика экспериментальных работ, реальные явления и процессы, наблюдаемые в природе, столь сложны, что точное моделирование может быть осуществлено в исключительно редких случаях. Возможности теории моделирования и подобия существенно расширяются, если умело пользоваться основными идеями этих теорий с учетом невозможности точного моделирования. Сравнительно простой математический аппарат теории подобия привлекает своей доступностью и вместе с тем часто создает иллюзии крайней ограниченности ее возможностей. Только глубокое проникновение в суть основных идей этой теории, не отражаемых математическим аппаратом, дает в руки исследователей мощный инструмент.  [c.15]

Разработанная методика моделирования позволяет с достаточной точностью и эффективностью изучать вопросы построения движений в манипуляционных системах. Поэтому в дальнейшем перспективно ее обобщить в двух направлениях переход к более сложным кинематическим схемам (увеличение числа обобщенных координат и нелинейных звеньев) учет ограничений в кинематических парах. Такие обобщения, хотя и не вызывают сложностей принципиального характера, но требуют для своей реализации дальнейшего развития методики моделирования.  [c.18]

Рассмотрим также схему моделирования на рис. 104, б, в которой задача моделирования динамических процессов в соединении с зазором решается путем использования трех блоков зоны нечувствительности , ограничения и умножения.  [c.359]

Величины bi могут колебаться от bimin до imax, что обусловливается видом ограничения, технологическими характеристиками используемого оборудования, материалом заготовки, требованиями к точности и качеству поверхностного слоя обрабатываемых деталей и т. д. Используя подход имитационного моделирования, находят отклонения от оптимальных параметров процесса и целевой функции, полученных по усредненным данным, значений этих же параметров и целевой функции, найденных при условии, что постоянные b в ограничениях модели принимают свои крайние значения. Таким образом, будет m (по числу ограничений) меняющихся факторов, каждый из которых имеет два уровня feimin и  [c.80]

Очевидно, что на точность получаемых результатов будут влиять такие факторы, как схема интегрирования, величина шага интегрирования Ат,-, количество КЭ в проскоке, число подынтервалов времени k, на которые разбит интервал Атс. Из рис. 4.20 видно, что при использовании уравнения (1.47) при k = 4 11 18 (кривые 1, 2, 3, 4) отличие результатов расчета от приближенной аналитической зависимости (4.79) составляет соответственно 0,19 0,14 0,08 0,01G (0) (при v = r). Таким образом, использование условия < 10 приводит к существенной погрешности расчетной схемы, что, в свою очередь, в задаче об определении СРТ приводит к необоснованному завышению скорости трещины, особенно в области ее высоких значений (o r). Следует отметить, что значению k = при v = r соответствует шаг интегрирования Ат, равный времени прохождения волны расширения через наименьший КЭ в вершине трещины. Попытки более адекватного описания зависимости G (y) с помощью более точного моделирования раскрытия трещины путем увеличения количества КЭ в проскоке не дали существенного изменения зависимости G (o) (кривая 6). При использовании уравнения (1.41) зависимость G v) отличается от аналитической (4.79) менее чем на 1 % (кривая 5). В то же время следует отметить, что ограничение на шаг интегрирования, обусловленное устойчивостью решения уравнения (1.41), делает применение данной схемы при и < Сд неэффективным, поскольку резко возрастает количество шагов Ат (при v = r /г = 18 при v = rI2 fe = 36 и т. д.).  [c.250]


Одним из наиболее общих подходов к анализу объектов па мстауровне является функциональное моделирование, развитое для анализа систем автоматического управления. В рамках этого подхода принимается ряд упрощающих предположений. Во-первых, па метауровпе, как и на макроуровне, объект представляется в виде совокупности элементов, связанных друг с другом ограниченным числом связей. При этом для каждого элемента связи разделяются на входы и выходы. Во-вторых, элементы считаются однонаправленными, т. е. такими, в которых входные сигналы могут передаваться к выходам, но сигналы на выходах не могут влиять па состояние входов через внутренние связи элемента. Сигналами при этом называют изменения фазовых переменных. В-третьих, состояния любого выхода не зависят от нагрузки, т. е. от количества и вида элементов, подключенных к этому выходу. В-четвертых, состояние любой связи характеризуется не двумя, а одной фазовой переменной (типа потенциала или типа потока), что непосредственно вытекает из предыдущего допущения.  [c.55]

Промышленное применение системы NASTRAN долгое время тормозилось именно огромным количеством необходимых исходных данных. С целью облегчения подготовки данных были разработаны автономные программы (препроцессоров), генерирующие данные для системы. Так, программа GR DXY составлена для моделирования небольших гильз снарядов с помощью треугольных и трапециевидных кольцевых элементов. Кроме того, программа может использоваться для моделирования тонкостенных осесимметричных конструкций. Чтобы воспользоваться программой, пользователь должен разбить конструкцию на подобласти, ограниченные прямыми линиями или полиномиальными кривыми. Остальные действия выполняет сама программа.  [c.60]

Экспериментальный подход использует статистические методы численного анализа ограничений при различных фиксированных входных величинах. Так, например, можно осуществить упорядоченный или случайный перебор точек в допустимом множестве Dz. Если считать, что N — полное число перебираемых точек, а Nj — число точек, в которых нарушается ограничение Hj, то отношение NjIN будет характеризовать вероятность нарушения данного ограничения. При малой вероятности нарущения ограничение можно считать несущественным. Несмотря на логическую простоту, возможности экспериментального подхода также сильно ограничены из-за большой размерности задачи. Поэтому разработку достаточно универсальных, формализованных методов выделения существенных ограничений можно также отнести к числу нерешенных проблем расчетного моделирования ЭМП.  [c.123]

Авторы в течение нескольких лет занимались фрактальным компьютерным моделированием различных физических процессов в нефтепереработке и не уставали удивляться, каким образом одни и те же достаточно примитивные модельные <еханизмы (DLA - агрегация, ограниченная диффузией ССА - кластер-кластерная агрегация и ряд разработанных нами модифицированных механизмов [16]) могли быть успешно использованы для широчайше-, го спектра задач моделирования.  [c.34]

Рассмотренные в гл. 3 математические модели ОЭП построены в линейном приближении. Такой подход к модетьному представлению подсистем ОЭП и прибора в целом позволяет с единых методических позиций описывать подсистемы разной физической природы разработать и реализовать на ЭВМ конечное и ограниченное чиспо алгоритмов для моделирования ОЭП эффективно использовать ресурсы ЭВМ и возможности проектантов при анализе, синтезе и параметрической оптимизации объекта проектирования.  [c.89]

Для математического моделирования конкретных течений многокомпонентного реагирующего газа необходимо поставить соответствующие начальные и граничные условия Все задачи аэротермохимии можно разбить па внешние и внутренние. В первом случае газовый поток полностью охватывает обтекаемое тело (типичный пример — полет. 16-тательного аппарата в атмосфере), а во втором случае, наоборот, поток газа ограничен твердыми стенками (типичн ей пример — течение газа в трубах). Поэтому граничные и начальные условия различают в зависимости от типа задачи.  [c.209]

Иногда ограничения, накладываемые третьим условием подобия, настолько сильны, а требования к достоверности моделирования настолько строги, что исследования проводят на полномасштабной (в натуральную величину) модели. Так поступают, например, при исследовании гидроди-  [c.91]

Исследование термодинамических циклов тепловых машин является основной задачей технической термодинамики. Однако провести подробное исследование цикла, установить его основные характеристики (работу, КПД) при изменении отдельных параметров на реальной установке можно лишь в ограниченных пределах. Поэтому при исследовании циклов энергетических установок вместо натурных испытаний целесообразно использовать различные модели. Модели бывают разные в зависимости от модели различают предметное, физичеекое, аналоговое и математическое моделирование.  [c.238]

В твердотельном моделировании реализованы два режима создания объектов - режим адаптивной (свободной) параметризации и режим принудительной параметризации. В режиме адаптивной параметризации конструктор создает модель изделия без первоначальных позиционных ограничений ка ее кокетрукткБныс элементы. Адаптивная параметризация позволяет быстро и оперативно вносить изменения в модель, активизируя необходимые параметры элементов конструкцрш. Конструктору предоставляется возможность в результате оперативного редактирования просмотреть различные варианты и вернуться к первоначальному варианту, при этом нет необходимости беспокоиться о потере последовательности данных построения. На любом этапе модель может быть модифицирована, проанализирована и выбран окончательный вариант.  [c.29]

Это обстоятельство накладывает серьезное ограничение на возможность точного моделирования, так как выполнить точное подобие процессов конвективного теплообмена в широком интервале изменения рода жидкости и температурных параметров процесса не представляется возможным. В частности, это приводит к тому, что при точном моделировании возможность замены газа капельной жидкостью практически исключается из-за неподобия полей физических параметров в образце (газ) и модели (капельная жидкость).  [c.168]

Моделирование роста трещины основано на интегрировании формулы Формана, в которой используют AKgff и Rgff = (K in)eff/(.K,mx)eff- ВсС отрицательные значения асимметрии цикла приравнивают к нулю и циклы с этой асимметрией рассматривают как пульсирующие. Эти два ограничения существенно сужают применимость рассмотренной модели прогнозирования трещин. Помимо того, модель предполагает, что зона воздействия перегрузки значительно больше пластической зоны, связанной с перегрузкой. Однако эксперименты показывают, что ее размер может быть близок величине  [c.422]

Предпринимались разные попытки выявить характерные атомные конфигурации в зернограничной структуре, но пути решения этого вопроса удалось найти используя результаты геометрического анализа [164] и моделирования на ЭВМ [165-167], которые позволили выявить те кирпичики , из которых построена любая граница. Оказалось, что существует строго ограниченный набор координационных многогранников, по вершинам которых могут располагаться атомы в границе зерен. Эти многогранники совпадают с берналовскими полиэдрами, предложенными для описания структуры жидкостей и аморфных тел. В работе [168] показано, что многогранники можно разбить на тетраэдры и октаэдры, т. в. на основные элементы, характерные для кристаллической структуры металлов, однако искажения этих тетраэдров и октаэдров по сравнению с правильными формами довольно велики. В отличие от структуры аморфных тел, где атомные полиэдры расположены неупорядочено, в границе полиэдры располагаются в один слой, для них имеются жесткие граничные условия, обусловленные периодичностью кристаллов по обе стороны границы, что приводит к строго упорядоченному построению атомных групп в структуре границ. Упорядоченность структуры характерна для всех границ зерен.  [c.89]


Полнота и достаточность обеспечения анализируе мых параметров прогнозной информацией. Ограничен ный объем прогнозной информации требует отказа о методов прогнозирования, основанных на информацион ном моделировании, и разработки новых, например ис пользующих эвристические методики.  [c.236]

В установке ИМАШ-11 использован принцип регулирования температуры на поверхности образца изменением расстояния между образцом и нагревателем. Принципиальная схема устройства для моделирования режимов нагрева показана на рис. 94. Исследуемый образец листового материала 1 установлен горизонтально на неподвижных опорах 2, подлежащий нагреву участок образца ограничен экраном 3 из полированной нержавеющей стали. На нагреваемой и противоположной ей поверхностях образца температура контролируется хромель-алюмелевыми термопарами 4 h. 5. Образец находится в открытой сверху камере 6 прямоугольной формы, в нижнюю часть которой через штуцер подводится инертный газ. При нагреве образца на воздухе происходит возгорание связующего (если температура поверхности образца выше температуры воспламенения связующего). Опыты с нагревом стеклопластиков в защитной атмосфере азота показали некоторое увеличение прочности при уменьшении термоокислительной деструкции связующего [77]. Однако есть основания предполагать, что при нагреве могут образоваться химические соединения азота с компонентами связующего вплоть до образования цианистых соединений. Поэтому для пблной безопасности работы на установке в качестве защитной среды используется аргон.  [c.176]

В заключение отметим, что выявленные на основе математического моделирования особенности формирования динамических нагрузок подтверждены экспериментальными исследованиями сумматорных приводов конвертеров, экскаваторов и прокатных станов. На основе этих исследований разработана методика приближенного синтеза приводов, сформулированы требования к кинематической точности зубчатых колес, к симметрии параметров ветвей, характеристик тормозов и двигателей. По результатам исследований предложены конструктивные решения, существенно снижающие динамическую нагруженность агрегатов и снимающие тем самым одно из главных ограничений, препятствующих распространению сумматорных приводов.  [c.116]


Смотреть страницы где упоминается термин Моделирование ограничения : [c.253]    [c.74]    [c.103]    [c.95]    [c.340]    [c.53]    [c.302]    [c.12]    [c.461]    [c.24]    [c.40]    [c.116]    [c.33]    [c.40]   
Система проектирования печатных плат Protel (2003) -- [ c.181 ]



ПОИСК



Ограничения

Ошибки и недостатки моделирования индексов и ограничений



© 2025 Mash-xxl.info Реклама на сайте