Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ракета для полета на Луну

Ракета для полета на Луну. Ракета с непрерывным истечением пороховых газов летит вертикально вверх. Скорость истечения газов относительно ракеты а и масса вытекающих в секунду пороховых газов /х = —т предполагаются постоянными во времени. Движение совершается без трения при постоянном ускорении силы тяжести g. Составить уравнение движения и проинтегрировать его, считая начальную скорость ракеты у поверхности Земли равной пулю. На какой высоте будет находиться ракета  [c.316]


Ракета для полета на Луну 316 Распределение нагрузки 77 Рассеяние энергии 225 Расщепление ядер лития 318 Рауса уравнения 296  [c.366]

Предположим, что для экспедиции на Луну используется шестиступенчатый ракетный комплекс, причем четыре ступени расходуются для вывода корабля на траекторию полета к Луне, а две — для посадки на Луну и старта с нее. Можно сказать и иначе (так обычно и говорят) ракета-носитель — четырехступенчатая, а космический корабль имеет две ракетные ступени. Пусть первые три ступени выводят космический корабль на промежуточную круговую орбиту спутника Земли, расположенную на высоте 200 км. Круговая скорость на этой высоте равна 7,8 км/с. Оценим величину гравитационных потерь скорости и потерь на сопротивление в 1,2 км/с, т. е, будем считать, что выход на орбиту потребовал характеристической скорости, равной 9 км/с. Каждая из использованных трех ступеней сообщила кораблю идеальную скорость 3 км/с.  [c.271]

В сентябре 1970 г. полет на Луну и обратно совершила автоматическая станция "Луна-16". На борту ее было специальное устройство, с помощью которого осуществлено бурение лунного грунта на глубину до 35 см. Принципиально "Луна-16" отличалась от всех созданных до этого автоматических космических аппаратов наличием ракеты "Луна - Земля", впервые осуществившей старт с другого небесного тела и доставившей образцы лунного грунта на Землю для их исследования и изучения. Спускаемый аппарат ракеты "Луна - Земля" осуществил прямой вход в атмосферу со второй космической скоростью, при которой значения перегрузки достигали 350, а температура в критической точке измерялась многими тысячами градусов. Станция "Луна-16" прилунилась в Море Изобилия.  [c.21]

Многоступенчатые ракеты открывают возможность и для достижения еще больших скоростей, необходимых для полета к Луне и планета.м Солнечной системы. Здесь уже трехступенчатыми ракетами не всегда можно обойтись. Потребная характеристическая скорость UX существенно возрастает, а задача формирования космических орбит приобретает более сложный характер. Скорость вовсе не обязательно увеличивать. При выходе на орбиту спутника Луны или планеты относительную скорость надо уменьшить, а при посадке — погасить полностью. Двигатели включаются многократно с длительными интервалами, в течение которых движение корабля определяется действием гравитационного поля Солнца и ближайших небесных тел. Но сейчас и в дальнейшем мы ограничимся оценкой роли только земного тяготения.  [c.32]


К 1963 году, с появлением проекта мощной ракеты-но-сителя УР-500 ( Протон ), Владимир Челомей расширил программу модульного космического корабля для решения широкого спектра задач, как оборонного, так и научного и народнохозяйственного значения. Для решения военных задач по разведке и инспекции спутников воздушно-космиче-ский аппарат оснащался орбитальным двигателем маневрирования, системами наведения и сближения, оружием кос-мос-космос . Позднее ракетоплан намечалось использовать для научных задач, включая полет на Луну и возвращение с приземлением, а также как средство по эксплуатации околоземного пространства.  [c.248]

Концепция корабля ЛК-700 была во многом неожиданна. Стремясь предельно упростить операции, связанные с запуском и маневрами корабля в космическом пространстве, конструкторы ОКБ-52 предложили осуществить прямой полет на Луну. Однако, как показывали расчеты, для этого необходимо было создать ракету-носитель, в полтора раза превосходящую по грузоподъемности Н-1 .  [c.342]

Существует метод, позволяющий резко уменьшить затраты энергии на лунную экспедицию, а следовательно, и сильно ее удешевить, хотя этот метод и имеет свои специфические трудности. До сих пор мы считали, что вся полезная нагрузка лунной экспедиции обязана выйти на траекторию полета, благополучно опуститься на поверхность Луны, затем взлететь с нее, чтобы через 3—4 дня войти в земную атмосферу. То же касалось и отдельных ступеней ракеты. Например, последняя ступень, предназначенная для старта с Луны, должна была непременно целиком, со всем своим топливом, сначала опуститься на Луну, а затем стартовать с нее. На первый взгляд кажется, что иначе и быть не может. Но нельзя ли оставить по дороге к Луне часть полезной нагрузки и топлива, чтобы подобрать ее на обратном пути, когда она и понадобится Зачем, например, тащить на поверхность Луны тепловую защиту, которая понадобится только при входе в атмосферу  [c.277]

Целесообразной для лунного корабля является двухступенчатая схема. Первая ступень — спуск и посадка, вторая — взлет и стыковка с основным блоком на орбите. Общий вид лунного корабля представлен на рис. 2.16. Корабль свободен от каких бы то ни было аэродинамических обводов. Конструкция — чисто космическая. Проектанты уложились в 14,5 тс. Этот вес входит только как одна из составляющих в тот полезный груз, который должен быть выведен ракетой-носителем на околоземную орбиту и дальше — на траекторию полета к Луне.  [c.76]

Управление по крену, т. е. поворот ракеты относительно продольной оси, двигатель 32 самостоятельно обеспечить не может. Это возлагается на вспомогательные двигатели. После выходи иа начальную орбиту двигатель 32 выключается, но угловая ориентация ракеты находится под контролем, и управляющие функции несут вспомогательные двигатели. После выключении основного двигателя производится продувка магистралей и баков, для чего снова надо осадить топ.чиво. Необходима осадка топлива и перед вторым запуском 32 для выхода на траекторию полета к Луне. И наконец, после выхода на траекторию полета к Луне производится перестройка блоков, для которой предусматривается специальная ориентация ракеты в пространстве все эти операции также выполняют вспомогательные двига-те.пи.  [c.88]

РАКЕТА-НОСИТЕЛЬ ЭНЕРГИЯ . Ракета носи тель Энергия (рис. 15) предназначена для выведения космических аппаратов на низкие, а с использованием разгонных блоков на средние, высокие эллиптические и круговые орбиты (в том числе на солнечно-синхронные и стационарные), а также на траектории полета к Луне и планетам Солнечной системы.  [c.49]

Для заданного азимута запуска траектория выведения на орбиту ИСЗ оптимизируется независимо от расположения Земли и Луны. Однако участок разгона с орбиты зависит от расположения Земли и Луны, которое определяет требования к изменению плоскости движения при втором запуске ступени S-IVB. Поэтому участок выведения на траекторию полета к Луне должен оптимизироваться совместно с определением независимых переменных. Схема, выбранная для вычислительной программы прицеливания ракеты-носителя на участке выведения к Луне, основана на аппроксимации по методу наименьших квадратов оптимальных параметров активного участка полета ступени S-IVB, выражаемых через параметры гиперповерхности. Это позволяет независимо оптимизировать выведение на траекторию полета к Луне в процессе итерационного вычисления зависимых переменных. Гиперповерхность, показанная на рис. 31.1, образована путем состыковки конических сечений для двух притягивающих центров.  [c.93]


На основе этих факторов руководители производства ракетных двигателей, корпусов ракет и снарядных систем совместно с военными делают выбор типа жидкостного ракетного двигателя. Полеты спутников по орбитам, будущие полеты к Луне, планетам и вообще в космическое пространство будут осуществляться при использовании в качестве силовых установок только ракетных двигателей. Основные требования к силовой установке в каждом конкретном случае космического полета изменяются в зависимости от полезной нагрузки, задач полета и типов ступеней двигателя эти требования могут быть выполнены ракетными системами с различной, меняющейся в широких пределах тягой, работающими на различных топливах и с различными типами двигателей, В табл. 13.2 показаны некоторые типичные характеристики жидкостных ракетных систем для различных видов космического полета.  [c.441]

Большая ракета для полета на Луну, получившая название Звезда Африки , также снабжалась взрывными камерами с узамбаранитом . Внутри она была разделена на шесть помещений. В первом находится командир. Здесь имелись койки и кресло, стол и приборы навигации и управления. Во втором помещении располагалась кладовая припасов провизия, одежда в ящиках, стальные баллоны со сжатым воздухом. В третьем помещении находилась кают-компания с койками, креслами, столом, шкафами и хрустальными, толщиной в 10 сантиметров, окнами с впаянными металлическими сетками. Четвертое помещение — кладовая для горю-  [c.103]

Я намеревался вообще не делать какого бы то ни бьшо заявления, но, когда узнал, что во всех сообщениях важнейшее место отводилось исключительно ракете для полета на Луну, которая якобы взорвалась в средних слоях атмосферы, я опубликовал короткое заявление следующего содержания Испытание сегодня после полудня бьшо одним из длинной серии экспериментов с ракетами, использующими совершенно новое топливо. Не предпринималось никакой попытки достичь Луны или что-нибудь другое столь же эффектного характера. Ракета обьшно шумит, и этого достаточно, чтобы привлечь значительное внимание. Испытание бьшо совершенно удовлетворительным в воздухе ничто не взрьшалось, и не бьшо причинено никакого ущерба, исБшючая инцидент, сопутствовавший приземлению . На следующий день я опубликовал то же самое заявление, заменив лишь слова совершенно новое топливо на жидкое топливо ...  [c.337]

Тор Эйбл (фиг. 1.10 и 1.11). Примером многоступенчатой ракеты может служить четырехступенчатая ракета Тор Эйбл , предназначенная для полета на Луну. Первой ее ступенью служит баллистическая ракета средней дальности Дуглас Тор . Вот ее основные характеристики  [c.39]

Размышления о космическом полете ночти так же стары, как размышления о полетах с работаюш им двигателем в атмосфере. Легенды и художественная литература содержат много более или менее фантастических онисаний полетов на Луну, вокруг Луны или на другую планету. Некоторые авторы по истории науки приписывают Сирано де Бержераку [17] предсказание о реактивном движении как средстве космического полета, сделанное еш е в 1648 или 1649 году, когда он написал свое повествование о путешествии на Луну. В конце прошлого века немецкий учитель математики Курт Ласвиц написал широко читаемый межпланетный роман [18], в котором, но свидетельству сына автора, впервые упоминается космическая станция. Однако эта станция — не спутник, враш,аюш,ийся вокруг Земли она была подвешена между Марсом и Землей в точке, где уравновешены гравитационные снлы. Вскоре после этого, в 1903 году, Константин Эдуардович Циолковский, русский учитель математики, описал обтекаемый, приводимый в движение ракетой летательный аппарат для космического полета, в котором в качестве ракетного топлива исиользовались жидкий кислород и водород [19]. Возможно, он был первым человеком, который обосновал свой проект на разумных принципах. Его предложение включало гироскопическое управление и отражатель газовой струи для навигации в космосе.  [c.188]

Однако в связи с развертыванием работ по созданию проекта Сатурн - Аполлон в США, направленных на создание комплекса для полета к Луне трех астронавтов и высадки на Луну двух из них, основной упор в работах с PH Н-1 был сделан на проектирование лунного комплекса с полезной нагрузкой, выводимой на орбиту высотой 220 км, не менее 95 т. Для решения этой задачи летный вариант ракеты-носителя выполнен в виде трехступенчатой ракеты, собранной по схеме тандем . Общая длина ракеты без полезной нагрузки равнялась 64,4 м, диаметр максимальный по заднему торцевому шпангоуту хвостового отсека первой ступени более 16 м, диаметр переднего торцевого стыковочного шпангоута третьей ступени 6 м. Стартовая масса ракеты 2750-2820 т, тяга двигательной установки на Земле равна 44200 кН. Длина ракеты с полезной нагрузкой массой 95 т равна 101м.  [c.45]

Б табл. 1 представлены типичные значения потерь для ракеты-носителя Saturn V применительно к траектории полета на Луну.  [c.24]

При планировании задачи полета на Луну определенное преимущество достигается в случае двух возможностей отлета с околоземной орбиты. Бторая возможность появляется приблизительно через 90 мин после первой (т. е. через один оборот на промежуточной орбите ИСЗ) и оказывается полезной в тех случаях, когда не все системы ракеты-но с иге ля и космического корабля проверены и готовы к повторно включению двигателя для выведения на траекторию полета к Луне. Б процессе подготовки полета принимается решение о том, сохранять ли время перелета к Луне для второй возможности таким же, какое требовалось для первой (класс 1) или уменьшить время полета для второй возможности на 90 мин (класс 2). Уменьшение времени перелета на 90 мин при использовании второй возможности позволяет сохранить время прибытия к Луне приблизительно таким же, как для первой возможности.  [c.95]

Для осуществления цели программы Apollo была принята схема полета со встречей на орбите ИСЛ, требующая ракету-носитель меньшего стартового веса, чем в случае прямого полета на Луну.  [c.216]


На предприятиях Подмосковья создавались межкоптипептальпые ракеты УР-500 и более совершенная УР-700. С их помощью па орбиту выводилось множество космических станций и транспортных кораблей. Разрабатывались аппараты для посадки космонавтов на Луну, пилотируемый корабль для полета на Марс. Под руководством В.Н. Челомея была создана военнокосмическая станция "Алмаз", выполнявшая функции космического глаза, следящего за Землей. НПО создает станцию для дистанционного зондирования Земли и другую технику гражданского назначения  [c.11]

Проведенный в предыдущих параграфах анализ позволяет произвести оценку возможностей одноступенчатой ракеты в отношении подъема полезного груза в космическое пространство. Правда, при выводе груза на орбиту спутника Земли или на траекторию полета к Луне участок активного полета не будет прямолинейным, однако при соответствующем усреднении величины os 0 для приближенного определения конструктивных параметров ракеты, позволяющих достигнуть требуемой скорости, все же можно воспользоваться уравнением (1.14). Оценим сначала требуемое значение х корости ракеты в конце активного участка. Согласно работе [18] Для вывода искусственного спутника Земли на круговую орбиту высотой 200 миль (322 км) — минимальная высота, на которой еще возможно достаточно длительное существование спутника без чрезмерных потерь энергии от трения о воэдух,— необходима конечная скорость 25 400 фут сек ( 7,8 км/сек). При запуске ракеты с экватора в восточ- ном направлении за счет вращения Земли можно получить даром скорость около 1 500 фут/сек (- 460 jtt/сек), так что сама ракета должна будег развить скорость лишь около 24 000 фут/сек (7,35 км/сек). Для полета к Луне минимальная потребная скорость ракеты при использовании скорости вращения Земли составит около 34 ООО фут/сек (10,4 км/сек).  [c.30]

В 1913 г. Годдард завершил новую рукопись Перемещения в межпла-нетном пространстве (опубликована в 1970 г. [6, с. 117—123]), которая явилась предварительным итогом его исследований по теории реактивного движения и космического полета. В этой работе рассмотрена, в частности, задача о посылке на поверхность Луны заряда осветительного пороха, содержится тезис об использовании Луны для производства на ней ракетного топлива и для старта с нее к планетам (эти мысли были высказаны им еще в 1908 г.), а также идея о применении на корабле для полета к Марсу электрического двигателя с солнечным источником энергии и др. Теоретические выкладки и расчеты были окончательно завершены Годдардом в 1914 г. и оформлены в капитальную статью Проблема поднятия тела на большую высоту над поверхностью Земли (представлена в том же году в Кларкский университет, но опубликована лишь в 1970 г. [6, с. 128—152]). Здесь Годдард впервые привел собственный вывод уравнения движения ракеты, который был сделан с учетом действия гравитации и сопротивления атмосферы. Убедившись в сложности решения полученной вариационной задачи, Годдард в расчетах применил интервальный метод (весьма, впрочем, громоздкий). Все расчеты были сделаны для твердого или жидкого кислородно-водородного топлива. В статью вошли также в более подробном изложении и другие идеи Годдарда.  [c.441]

В середине 30-х годов вопросом осуш,ествимости выхода в космос заинтересовался А. Н. Крылов. На базе расчетов Отто фон Эбергарда А. Н. Крылов нашел отношение стартового веса ракеты к конечному весу для случая достижения Луны и обратно Земли (в рамках определенных гипотез) это отношение оказалось равным примерно 48 ООО. Переведя сейчас же все в доллары, Крылов нолучает, что для осуш ествления полета необходимо затратить 48 миллионов долларов. Крылов, как и многие ученые этих лет, указывал на громадные трудности, стояш ие на пути освоения космоса человеком.  [c.237]

В книге в доступной форме, без применения сложного математического аппарата, но вместе с тем вполне строго излагаются основы космодинамики — науки о движении космических летательных аппаратов. В первой части рассматриваются общие вопросы, двигательные системы для космических полетов, пассивный и активный полеты > поле тяготения. Следующие части посвящены последовательно околоземным полетам, полетам к Луне, к телам Солнечной системы (к планетам, их спутникам, астероидам, кометам) и за пределы планетной системы. Особо рассматриваются проблемы пилотируемых орбитальных станций и космических кораблей. Дается представление о методах исследования и проектирования космических траекторий и различных операций встречи на орбитах, посадки, маневры в атмосферах, в гравитационных полях планет (многопланетные полеты и т. п.), полеты с малой тягой и солнечным парусом и т. д. Приводятся элементарные формулы, позволяющие читателю самостоятельно оценить начальные массы ракет-носителей и аппаратов, стартующих с околоземной орбиты, определить благоприятные сезоны для межпланетных полетов и др. Книга содержит большой справочный числовой и исторический материал.  [c.2]

Тейлор и Дайсон были убеждены, что подход NASA к проблеме запуска космических кораблей являлся неправильным. Ракеты на химическом топливе бьши очень дорогими, имели крайне ограниченную полезную нагрузку и не могли использоваться для полетов за пределы Луны.  [c.279]

Мы помним, что уже к середине XIX века многие энтузиасты научно-технического прогресса заговорили о возможности использования реактивной тяги для нужд пассажирского и грузового транспорта. Разумеется, не обошли эту тему и литераторы. Большая часть из них, как мы увидели, полагала, что будущее за комбинированными реактивно-аэростатиче-скими системами, — это было время паровых двигателей, а о ракетах на жидком топливе никто не мог даже мечтать. Например, Жюль Берн не рискнул описать космический полет на ракете, полагая, что для достижения Луны заряда ракеты недостаточно — куда проще и эффективнее запустить этот снаряд из пушки. Однако и он в романе Вокруг Луны (1870 год) приводит эпизод с применением тормозных ракет, которые первоначально планировалось использовать для мягкой посадки на Луну, но затем нужда заставила путешественников запустить эти ракеты для коррекции курса с целью возвращения на Землю.  [c.94]

Таким образом, современная техника решила первые задачи космических полетов, заплатив за это и человеческими жизнями и высоким напряжением экономики. Достаточно сказать, что исследование Луны — программа Аполлон — обошлась Соединенным Штатам примерно в 27 миллиардов долларов. Космическая ракетная система и связанный с ней наземный комплекс исключительно дороги. В них сосредоточены не только результаты труда разработчиков, технологов, производственников и испытателей выполнение задач пуска требует широко разветвленной системы контроля и специального обслуживания. Назначение же ракеты-носителя — одноразовое. После пуска ракета полностью погибает на Землю возвращается только экипаж, находящийся в так называемом спускаемом аппарате. Не случайно поэтому в тех немногих странах, которые смогли принять на себя бремя разработки новых ракет-носителей, выполнение многих, казалось бы, реальных проектов разумно откладывается до лучших времен. Необходимо, с одной стороны, существенное снижение стоимости и более высокое состояние службы надежности и безопасности. С другой стороны, нужна самая детальная и многосторонняя проработка уникального научного оборудования, чтобы каждый пуск давал максимум ценной информации. Одним из главных путей для достижения этих целей является объединение усилий специалистов разных стран, чему положено начало, в частности, работами специалистов социалистических стран в рамках программы Интеркосмос , а также совместным полетом советского и американского кораблей Союз и Аполлон .  [c.16]


Для ракеты-но сите л я Satum V приращение характеристической скорости на 1 м/сек экивалентно увеличению веса полезной нагрузки, выводимой на траекторию полета к Луне, на 15 кг.  [c.26]

Такой старт давал возможность произвести посадку на Луне в расчетном месте № 2 при угле возвышения Солнца около 10°, при общей продолжительности полета 8 сут 3 ч, обеспечивал резерв топлива для ЖРД служебного отсека, соответствующий изменению скорости 52 м/сек. Первая ступень ракеты Saturn V закончила работу на дальности 93,5 км, подняла апп ат на высоту 67 км и увеличила его скорость до 2760 м/сек.  [c.140]

Дальше была произведена проверка бортового оборудования корабля. Центр управления полетом обнаружил, что клапан окислителя на воспламенителе Н2/02 остался открытым после наддува пускового бака для повторного запуска ЖРД J-2 ступени S-IVB. Командой, поданной из Центра управления, удалось клапан закрыть. Высказывались большие опасения, что удар молнии в ракету мог разрушить чувствительную аппаратуру посадочного радиолокатора и неудастся осуществить посадку лунного корабля на Луну,  [c.158]

Успех пришел к новой ракете только 2 января 1959 года—старт и полет всех трех ступеней завершились благополучно. И хотя главную задачу запуска (а согласно программе лунных исследований, аппарат Е-1 должен был упасть на Луну) выполнить не удалось, советские конструкторы имели все основания торжествовать. Нри кажуш ейся скромности габаритов Е-1 (полезная нагрузка составила всего 361 килограмм) специалистам было понятно, что ракета Р-7 , снабженная третьей ступенью, уже способна вывести на околоземную орбиту контейнер весом в пять тонн. Этого было вполне достаточно для начала экспериментальных пусков с участием человека.  [c.31]

Вспоминаю совеш ание, которое собрал С. П. Королев после полета в Пицунду к П. С. Хруш еву, находившемуся там в это время на отдыхе. Этот полет был необходим для решения вопроса об ассигнованиях для работ по комплексу П-1 (экспедиция на Луну). По возвраш ении из Пицунды он собрал совеш ание главных конструкторов у себя в кабинете. Все собрались, а его нет. Мы в недоумении ждем. Анатолии Петрович Абрамов, его заместитель, говорит, что Сергеи Павлович в своем кабинете, сейчас должен прийти. Через некоторое время входит Сергей Павлович, ссутулившийся, рассеянно кивает головой, подходит к столу, садится, берется рукам за опуш енную голову, сидит молча некоторое время и как бы про себя говорит раздумчиво, тихим голосом Упустим время, не наверстаем , затем поднимает голову, видит сидяш их, потряхивается и произносит Я пригласил вас, чтобы рассказать об итогах встречи с Никитой Сергеевичем. Он сказал У нас большие успехи о освоении космического пространства, наши боевые ракеты стоят на дежурстве. Мы  [c.314]

Другими видами баллистических полетов, для которых может потребоваться управление, являются вход в атмосферу и посадка космических снарядов, нолет в пространстве с очень малыми ускорениями, посадка на Луну или планеты без атмосферы. Может понадобиться аппаратура управления и для того, чтобы измерять и регулировать корректирующие импульсы тяги двигателей ракеты при космических полетах. Свободное падение в пространстве является таким случаем полета, в котором акселерометры не дают выходной величины, а положение и скорость снаряда могут быть вычислены только по начальным условиям и известным характеристикам гравитационного поля.  [c.669]

RL-10 — один из первых кислородо-водородных ЖРД его создание относится к 1960-м гг. Более 160 экземпляров этого ЖРД использовались в различных полетах, главным образом в качестве маршевого двигателя второй ступени ракеты-носителя Атлас-Центавр , в программе изучения Луны космическими аппаратами Сервейтор и в запусках автоматических межпланетных станций. ЖРД работает по испарительному циклу ( безгенераторная схема), когда жидкий водород преобразуется в газообразное состояние, проходя через охлаждающий тракт сопла и камеры сгорания, и вращает, турбину (рис. 152). Другой интересной особенностью этого двигателя является большая степень расширения сопла (е = 40 для модификации, RL-10A-3), требующая полуторной длины охлаждающего тракта. В этом варианте жидкий водород через коллектор, размещенный между критическим сечением и срезом сопла, поступает в охлаждающий тракт и течет к срезу сопла, а после этого — в обратном направлении, к смесительной головке. На участке между коллектором и срезом сопла трубок в два раза больше, чем в камере сгорания. Трубки для протока водорода в противоположные стороны расположены через  [c.244]

Идеальная скорость о (1-12) представляет собой верхний предел достижимой скорости в идеальных условиях. В реальных условиях полета неизбежны потери скорости вследствие земного тяготения, аэродинамического сопротивления и некоторых других причин, о которых будет сказано позже. Сумма этих потерь может быть приближенно оценена заранее. Поэтому для каждой технической задачи, решение которой преследуется создаваемой ракетой, можно и заранее с достаточной точностью указать идеальную скорость, которая должна быть обеспечена надлежащим выбором параметров ракеты. Такая скорость называется характеристической и обозначается через Ох- Это — идеальнря скорость, которой должна обладать ракета, спроектированная для решения конкретной баллистической задачи. Так, например, для пуска ракеты с околоземной орбиты к Луне необходимо располагать характеристической скоростью Ох = 3200 м/сек. Для выведения спутника с поверхности Земли на низкую орбиту нужна характеристическая скорость около 9400 м/сек (фактическая скорость 7800 м/сек). Точное же значение Vx становится известным лишь после того, как ракета спроектирована.  [c.28]

PH Сатурн-5 фактически является специализированной, созданной только для вывода лунного комплекса на орбиту ожидания. Ракета имеет три ступени. Управляющие силы в полете создаются при работе первой и второй ступеней за счет поворота четырех качающихся периферийных двигателей. На третьей ступени управление производится за счет поворота маршевого двигателя и двух блоков рулевых двигателей. Первая ступень S-10 и вторая S-11 имеют одинаковый диаметр -10,06 м. Третья ступень SIVB имеет диаметр 6,6 м.  [c.137]


Смотреть страницы где упоминается термин Ракета для полета на Луну : [c.296]    [c.213]    [c.412]    [c.397]    [c.9]    [c.82]    [c.269]    [c.291]    [c.321]    [c.434]    [c.451]    [c.39]   
Смотреть главы в:

Механика  -> Ракета для полета на Луну


Механика (2001) -- [ c.316 ]



ПОИСК



Битва за Луну Несостоявшиеся похороны, или Были ли американцы на Луне Программа Lunex. Забытые проекты программы Apollo. Лунные корабли серии Gemini Программа облета Луны 7К-Л1. Ракетно-космическая система Н1-ЛЗ. Ракета-носитель Н-1 история катастроф. Жертвы космической гонки. Полеты Зондов. Испытания лунного корабля ЛЗ. Лунная программа УР

Луна

Полеты к Луне

Ракета



© 2025 Mash-xxl.info Реклама на сайте