Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Узлы решетки кристаллической

Узлы решетки кристаллической 115 Ультразвуки 324 Упругость 168  [c.575]

Кристаллические решетки зерна могут иметь различные структурные несовершенства точечные, линейные и поверхностные, которые возникают в результате образования вакансий — мест не занятых атомами дислоцированных атомов, вышедших из узла решетки дислокаций, возникающих при появлении в кристалле незаконченных атомных плоскостей примесных атомов, внедренных в кристаллическую решетку.  [c.7]


Твердые растворы внедрения. Б кристаллической решетке твердых растворов внедрения атомы растворенного элемента не замещают атомы растворителя, а располагаются между атомами в узлах решетки. Чаще всего твердые растворы внедрения образуются при растворении в металлах переходных групп неметаллов с малыми атомными диаметрами, таких, например, как водород, азот, углерод, бор. В частности, твердый раствор углерода в у-железе (аустенит) является твердым раствором внедрения. Твердые растворы внедрения чаще всего образуют металлы, имеющие гранецентрированную кубическую решетку.  [c.123]

Рис. 1.8. Схема строения реальной кристаллической решетки (крестиком отмечены дислоцированные атомы незаполненные узлы решетки — вакансии) Рис. 1.8. Схема <a href="/info/374954">строения реальной</a> <a href="/info/12569">кристаллической решетки</a> (крестиком отмечены дислоцированные атомы незаполненные узлы решетки — вакансии)
Химическое соединение характеризуется определенным соотношением чисел атомов элементов (стехиометрической пропорцией) и кристаллической решеткой с упорядоченным расположением атомов компонентов, отличной от решетки составляющих компонентов, а также определенной температурой плавления (диссоциацией) и неравномерным изменением свойств в зависимости от изменения состава (сингулярностью). При химическом соединении металлов в узлах решетки находятся положительно заряженные ионы, удерживаемые электронным газом . Металлическая связь не является жесткой и в зависимости от условий концентрация компонентов может не соответствовать стехиометрическому соотношению. Так, соединение РеСг может существовать при концентрации Сг от 20 до 60%.  [c.32]

Сопряжение узлов решетки между дислокациями сопровождается ее деформацией. Накопленная деформация на ряде решеток компенсируется появлением нарушений кристаллического строения в виде дислокаций.  [c.502]

Для наглядного представления внутренней структуры кристалла применяется способ изображения его с помощью пространственной кристаллической решетки. Кристаллической решеткой называется пространственная сетка, узлы которой совпадают с центрами атомов или молекул в кристалле (рис. 99).  [c.90]


Дефекты кристаллической решетки (0-мерные) - нарушения идеальной кристаллической решетки за счет различий в заполнении отдельных узлов решетки. Основными 0-мерными дефектами являются вакансии  [c.148]

Еще раз подчеркнем что кристаллическая решетка и кристаллическая структура — понятия различные. Узел решетки не обязательно совпадает с атомом в кристалле обязательным является только идентичность расположения атомов вокруг узла. Однако при описании дефектов, для простоты, обычно считают, что узлы решетки совпадают с материальными частицами.  [c.85]

Рассмотрим две кристаллические решетки одну реальную, содержащую дефекты различного типа, и другую — идеальную, не содержащую никаких дефектов. Предположим, что в реальной решетке имеются только искажения, вызванные упругими деформациями, тепловыми колебаниями атомов и т. п. В этом случае, несмотря на некоторые нарушения структуры, можно безошибочно указать, к каким узлам решетки идеального кристалла относятся соответствующие атомы в реальном кристалле. Взаимно однозначное соответствие между атомами реального и идеального кристаллов можно установить и при наличии в реальном кристалле точечных дефектов. При этом в ряде мест реальной решетки атомы могут отсутствовать, в каких-то местах могут появиться лишние атомы, но в остальном она будет совпадать с идеальной. Любую область реального кристалла, где можно установить взаимно однозначное соответствие с идеальным кристаллом, называют областью хорошего кристалла. Участки, где такое соответствие установить нельзя, называют областью плохого кристалла.  [c.98]

При образовании любых кристаллических решеток между частицами возникают силы, удерживающие атомы, молекулы или ионы в узлах решетки на определенном расстоянии друг от друга.  [c.28]

Атомы металла у этих карбидов располагаются в узлах кристаллической решетки, а атомы углерода находятся не в узлах решетки, как у обычных химических соединений, а между атомами металла, как у твердых растворов внедрения.  [c.75]

Кристаллическая решетка зоны Бриллюэна. В основе представления о кристаллической решетке лежит понятие решетки Бравэ, образуемой пересечением трех семейств параллельных и равноотстоящих плоскостей. Точки пересечения называют узлами решетки они определяются векторами  [c.129]

Переход от реальных тепловых колебаний решетки к нормальным колебаниям. Атомы кристаллической решетки совершают тепловые колебания относительно положений равновесия—узлов решетки. В идеальной решетке все атомы физически равноправны. В такой структуре взаимосвязанных атомов смещение любого из атомов распространяется по всему коллективу по кристаллической решетке бежит волна — типичное коллективное движение. Совокупность коллективных движений может быть представлена Б виде суперпозиции плоских монохроматических волн (так называемых нормальных волн) вида  [c.132]

Для твердых тел обычным и устойчивым состоянием является кристаллическое. Характеризуются кристаллы упорядоченным расположением частиц в строго определенных точках пространства. Если эти точки соединить пересекающимися прямыми линиями, получится пространственный каркас, называемый кристаллической решеткой. Точки, в которых находятся частицы, входящие в состав кристалла,, называются узлами кристаллической решетки. Ионы, атомы и молекулы в узлах решетки совершают малые колебания (простейшая физическая модель — набор гармонических осцилляторов).  [c.11]

Отправная точка теории неупорядоченных твердых веществ — отсутствие дальнего порядка в расположении атомов. Однако поскольку атомные радиусы определяются в значительной мере межчастичными взаимодействиями в самом атоме, то расстояния между атомами в неупорядоченных веществах определяются (при одинаковом типе связи) в основном собственными радиусами атомов. Поэтому для аморфных веществ характерно расположение атомов в виде случайной сетки при сохранении ближнего порядка в расположении атомов (рис. 12.2, б). Подобный тип неупорядоченного расположения атомов часто называют топологическим [б5, 66], в отличие от композиционного, характерного для неупорядоченного расположения атомов разного сорта по узлам пространственной решетки кристаллических сплавов.  [c.275]


Формула Брэгга - Вульфа. Кристалл представляет совокупность атомов или молекул, закономерно и упорядоченно расположенных в узлах пространственной кристаллической решетки. Поведение волн анализируется с помощью принципа Гюйгенса - Френеля, который позволил успешно построить теорию интерференции и дифракции электромагнитных волн в световом диапазоне. В соответствии с этим принципом каждая точка волнового фронта рассматривается как источник вторичных волн, которые интерферируют между собой с учетом возникающих при этом фазовых соотношений. Отражение волны от плоской поверхности сводится к тому, что каждая точка поверхности становится источником вторичных волн. Они интерферируют между собой и дают отраженную волну под углом отражения, равным углу падения.  [c.48]

При падении волны на кристалл узлы его кристаллической решетки становятся источниками вторичных волн. Если узлы расположены в одной плоскости, то произойдет отражение волны от плоскости под углом отражения, равным углу падения. Интенсивность отраженной волны зависит от того, насколько плотно узлы кристаллической решетки покрывают  [c.48]

Через узлы пространственной кристаллической решетки можно провести много плоскостей (рис. 26), и каждая из них будет отражать волну в таком направлении, чтобы угол отражения был равен углу падения, причем это условие не зависит от длины волны волны всевозможных длин отражаются одинаково. Однако в действительности отражение в данном направлении происходит не только от одной плоскости, но и от всех других плоскостей, параллельных данной. Все эти волны, отраженные от различных плоскостей, когерентны между собой, поскольку порождаются одной и той же первичной волной. Другими словами, при отражении волны от семейства параллельных поверхностей происходит деление амплитуды между вторичными отраженными волнами, распространяющимися под углом отражения, равным углу падения. Если разность фаз между вторичными волнами кратна 2тс, то они усилят друг друга и под углом отражения будет действительно распространяться отраженная волна. Если же эта кратность отсутствует, то никакой отраженной волны не будет. Условие, при котором происходит отражение от системы параллельных поверхностей, называется условием Брэгга- Вульфа. Выведем это условие.  [c.49]

В том случае, когда атом после выхода из узла кристаллической решетки остается в кристалле (н находятся между узлами решетки), изменение АФ составит значительно большую по сравнению с Ф —Фа величину (совокупность вакансии и межузельного атома составляет дефект по Френкелю). Концентрация вакансии, равная концентрации межузельных атомов  [c.373]

Значение эффективной массы электрона т определено с учетом взаимодействия электронов с кристаллической решеткой, когда последняя не испытывает тепловых колебаний. Поэтому можно считать, что электрон в идеальной кристаллической решетке (т. е. при Г = 0) движется как свободная частица, не испытывая рассеяния в узлах решетки. Это означает также, что электрон можно рассматривать как волну, свободно (без затухания) распространяющуюся в идеальной, не испытывающей тепловых колебаний, кристаллической решетке.  [c.456]

В первом случае атом внедряется при переходе из узла решетки в междуузлие на месте ушедшего атома образуется вакансия. Этот тип дефекта называется дефектами Френкеля. Энергия образования этих дефектов примерно равна сумме энергии образования вакансии и внедрения. При образовании дефектов Френкеля энергия кристалла возрастает, так как атом проникает в область, где силы отталкивания между внедренным атомом и окружающими его атомами очень велики кристаллическая решетка металла упруго деформируется.  [c.32]

Одна вакансия и один внедренный атом образуют пару Френкеля (рис. 25). Выбитый атом, в свою очередь, выбивает еще несколько атомов из узлов решетки. При облучении одним нейтроном 3,2-10 Мдж (2 Мэв) алюминия и бериллия возникает соответственно 6030 и 454 пары Френкеля. Энергия образования пары Френкеля равна 40 Ю" - дж (25 эв) она состоит из потенциальной энергии смещенных атомов 16-10 дж (10 эв) и энергии упругих колебаний групп атомов в кристаллической решетке 24-10" дж (или 15 эв).  [c.38]

Третий вид связи —металлическая связь, которая приводит также к образованию твердых кристаллических тел. Металлы можно рассматривать как системы, построенные из расположенных в узлах решетки положительно заряженных ионов, находящихся в среде свободных электронов (рис. В-3). Притяжение между положительными атомными остовами и электронами является причиной монолитности металла. Наличием свободных электронов объясняется высокая электропроводность и теплопроводность металла, что также является причиной блеска металлов. Ковкость металла объясняется перемещением и скольжением отдельных слоев атомных остовов.  [c.10]

Твердые растворы замещения могут быть ограниченные и неограниченные. При неограниченной растворимости любое количество атомов А может быть заменено атомами В. Следовательно, если увеличивается концентрация атомов В, то все больше и больше атомов В будет находиться в узлах решетки вместо атомов А до тех noip, пока все атомы А не будут заменены атомами В и, таким образом, как бы плавно совершится переход от металла А к металлу В (рис. 84). Это, конечно, возможно при условии, если оба металла имеют одинаковую кристаллическую структуру, т. е. оба комионента являются изоморфными.  [c.102]

Для прпмера рассмотрим сплавы меди и золота, имеющие одинаковую кристаллическую решетку и неограииченно растворяющиеся в твердом состоянии. В обычном твердом растворе меди и золота отсутствует строгая закономерность в расположении атомов меди и золота в узлах гранецентрированной решетки. Вероятность наличия в данном узле решетки того или иного атома зависит от концентрации сплава. Однако при определенных условиях (при медленном охлаждении твердых растворов большой концентрации) атомы меди и золота занимают определенные места в решетке (рис. 85).  [c.106]


Диффузия металла (по данным Вагнера, катионов Me +) н кислорода (по Вагнеру, анионов 0 ) в слое твердого защитного окисла Mejdmnn может осуществляться по одному из двух возможных механизмов (рис. 35) 1) движение ионов в междо-узельном пространстве кристаллической решетки 2) движение ионов по пустым узлам решетки.  [c.60]

Эти механизмы диффузии имеют место при росте защитных пленок первый — при образовании пленок ZnO, dO, BeO, AI2O3 и др. (рис. 35, а), второй — при образовании пленок с пустыми катионными или анионными узлами в кристаллической решетке, например Си О, FeO, NiO, СоО (рис. 35, б), a-FeaOg, Т1О2 (рис. 35, в) и др. Диффузия катионов в защитной пленке для соблюдения электронейтральности сопровождается одновременным перемещением в том же направлении эквивалентного числа электронов в междоузлиях при первом механизме и по электронным дыркам (катионам с более высокой валентностью) при втором механизме.  [c.60]

VI е т а л л и ч е с к а я связь отличается тем, что валентные электроны являются общими для всего кристалла. Металл пред-ста ляет собой совокупность пространственной решетки, построенной из положительных ионов, возникающих в результате отщепления от каждого из атомов одного или нескольких валентных электронов, и этих отщепившихся электронов, движущихся внутри ренлетки и взаимодействующих как с ионами, расположенными в узлах решетки, так и друг с другом. Электроны не принадлежат определенным атомам. Они непрерывно н бсс.чоря-дочно перемещаются внутри кристаллической решетки, переходят от одного атома к другому, связывая их. Скопление электронов, осуществляющих. металлическую связь, получило название элгектронного газа.  [c.9]

Твердые растворы замещения. При образовании твердых растворов этого типа атомы растворителя в узлах решетки замещаются атомами растворяющегося элемента. Схема распределения атомов металла А и металла В в твердых растворах замещения приведена на рис. 91, а. В твердых растворах наблюдается также замещение в кристаллической рещетке одного химического соединения другим, как это показано на  [c.122]

Различают твердые растворы замеш,ения (рис. 50, а) и твердые растворы внедрения (рис. 50, б). При образовании твердого раствора заме1цения атомы раствсзренного компонента замещают часть атомов растворителя в узлах его кристаллической решетки. Атомы растворенного компонента могут замещать любые атомы растворители, но взаимное расположение всех атомов, как правило, является статистически неупорядоченным.  [c.77]

Кристаллическая решетка отличается от решеток компонентов, образующих соединение. Атомы в ренютке химического соединения располагаются упорядоченно, т. е, атомы каждого компонента расположены закономерно и но определенным узлам решетки. Боль-ишнство химических соединений имеют сложную кристаллическую структуру,  [c.82]

Дефекты кристаллической решетки (О-мсриые) - нарушения идеальной кристаллической решетки за счет различий в заполнении отдельных узлов решетки. Основными 0-мерными дефектами являются вакансии (дефекты по Шотгки), когда > зел регнетки остается не занятым частицей, и дефекты по Френкелю - совокупность вакансии и частицы, занимающей нехарактерное междоузлие в решетке.  [c.362]

Примером квазичастиц другой группы служат электроны проводимости и дырки в полупроводниковых кристаллах (см. 6.2). Каждая такая квазичастица происходит (в одиночестве или в паре с другой квазичастицей) от реального электрона. Здесь налицо соответствие между квазичастицей и ее прообразом — реальной частицей. Однако и в этом случае движение квазичастиц имеет коллективный характер, хотя и не столь очевидный, как в случае фононов. Он проявляется в размазанности по пространству волновых функций электрона проводимости и дырки, в невозможности локализации их вблизи какого-либо узла решетки, т. е. в факте обобществления этих квазичастиц всем атомным коллективом, образующим кристалл. Заметим в этой связи, что если рассматривать действительно идеальный кристалл без каких-либо дефектов или примесей и, кроме того, исключить взаимодействие электронов с фононами, то в этом случае электроны проводимости и дырки будут распространяться по кристаллу беспрепятственно, совершенно не замечая атомов, сидящих в узлах кристаллической решетки.  [c.147]

В связи с тем, что квазиимпульс меняется под действием непернсдической части иотенциального поля, при любых нарушениях идеальности (периодичности) поля кристаллической решетки происходит изменение квазиимпульса Р и, следовательно, на любых нарушениях идеальной структуры решетки должно осуществляться рассеяние электронных волн. Это и является физической причиной электрического сопротивления. В качестве нарущений периодичности потенциального поля и(г) могут выступать тепловые колебания узлов решетки и ее дефекты (примесные атомы, вакансии).  [c.71]

Диэлектрики, в силу того, что свободных носителей заряда в них мало, состоят по сути из связанных заряженных частиц положительно заряженных ядер и обращающихся вокруг них электронов в атомах, молекулах и ионах, а также упруго связанных разноименных ионов, )асположенных в узлах решетки ионных кристаллов. Толяризация диэлектриков — упорядоченное смещение связанных зарядов под действием внешнего электрического поля (положительные заряды смещаются по направлению вектора напряженности поля , а отрицательные— против него). Смещение / невелико и прекращается, когда сила электрического поля, вызывающая движение зарядов относительно друг друга, уравновешивается силой взаимодействия между ними. В результате поляризации каждая молекула или иная частица диэлектрика становится электрическим диполем — системой двух связанных одинаковых по значению и противоположных по знаку зарядов q, Кл, расположенных на расстоянии I, м, друг от друга, причем q — это либо заряд иона в узле кристаллической решетки, либо эквивалентный заряд системы всех положительных или системы всех отрицательных зарядов поляризующейся частицы. Считают, что в результате процесса поляризации в частице индуцируется электрический момент p=ql, Кл-м. У линейных диэлектриков (их большинство) между индуцируемым моментом и напряженностью электрического поля , действующей на частицу, существует прямая пропорциональность р = аЕ. Коэффициент пропорциональности а, Ф-м , называют поляризуемостью данной частицы. Количественно интенсивность поляризации определяется поляризованно-стью Р диэлектрика, которая равна сумме индуцированных электрических моментов всех N поляризованных частиц, находящихся в единице объема вещества  [c.543]

Совокупность всех возможных преобразований симметрии кристаллической структуры называется пространственной, или федоровской, группой симметрии. Эти группы симметрии были выведены Е. С. Федоровым в 1890 г. и независимо чуть позже А. Шен-флисом за двадцать лет до экспериментального доказательства существования пространственной решетки кристалла. Различают два типа пространственных групп симметрии симморфные и не-симморфные. Симморфные группы возникают при размещении элементов симметрии точечных групп в узлах решетки Бравэ. Если обозначить федоровскую симморфную группу символом Фс, трансляционную — 7, точечную —/С, то между ними существуют следующие соотношения  [c.151]

В предшествующем пункте мы видели, что для частиц, вылетающих из узлов решетки, направления вдоль кристаллографических осей и плос костей являются закрытыми. Поэтому если узлы монокристалла в резуль тате ядерных процессов (а-распад упругое и неупругое рассеяние про тонов) станут излучателями частиц то в направлениях осей и плоскостей должны наблюдаться своеобразные тени. Это явление было предсказано и обнаружено А. Ф. Тулиновым (1965) и названо им эффектом теней . На рис. 8.16 приведена система теней, которая создана на фотопластинке протонами, упруго рассеянными в монокристалле вольфрама. Фотографическая пластинка располагалась перпендикулярно оси [ПО]. Пятно в центре представляет собой тень от цепочек, выстроенных вдоль этой оси. Остальные точечные тени образованы цепочками других направлений. Наконец, темные линии представляют собой тени от кристаллических плоскостей.  [c.462]


Точечные дефекты — это нарушения кристаллического строения в изолированных друг от друга точках решетки. Различают следующие точечные дефекты (рис. 17) 1) вакансии (дефекты Шоттки), т. е. узлы решетки, в которых атомы отсутствуют 2) атомы в междуузлиях (дефекты Френкеля) или атомы внедрения, Т. е. атомы, находящиеся В Промежутках между узловыми атомами  [c.29]

Дефекты после радиационного облучения. Из множества элементарных частиц и излучений, возникающих при распаде ядерного топлива (нейтроны, протоны, дейтроны, электроны, позитроны, а-частицы Р- и y-из-лучения), наибольшее влияние на свойства конструкционных материалов оказывают нейтроны. Из-за отсутствия заряда нейтроны проникают в кристаллическую решетку металла, вызывая в ней существенные изменения. Наиболее сильно влияют на свойства металлов быстрые нейтроны, нейтроны, обладающие энергией выше 0,5 эв, которые, попадая в кристаллическую решетку с энергией в несколько десятков тысяч электроно-вольт, упруго сталкиваются с ядром ионизированного атома. Атом, получив энергию, при смещении из узла решетки перемещается в междоузлие. Таким образом, в кристаллической решетке возникает вакансия и внедренный в междоузлии атом.  [c.38]

Твердый раствор вычитания или растворы с дефектной решеткой (рис. 67, в) образуются на основе некоторых химических соединений и, в частности, у фаз внедрения с кристаллической решеткой типа Na l. В кристаллической решетке твердых растворов вычитания некоторые атомы отсутствуют (возникают вакансии) при этом избыточные атомы растворенного элемента, по отношению к составу соединения, занимают нормальные положения. Например, в соединении NiAl все узлы решетки, где находятся атомы алюминия, заполнены, тогда как места для атомов никеля заполнены частично (Гд, = 1,43 А,  [c.94]

Проводниковые материалы представляют собой металлы и сплавы. Металлы имеют кристаллическое строение. Однако основное свойство кристаллического тела — анизотропность — не наблюдается у металлов. В период охлаждения металла одновременно зарождается большое количество элементарных кристаллов, образуются кристаллиты (зерна), которые в своем росте вступают в соприкосновение друг с другом и приобретают неправильные очертания. Кристаллиты приближаются по своим свойствам к изотропным телам. Высокая тепло-и электропроводность металлов объясняется большой концентрацией свободных электронов, не принадлежащих отдельным атомам. При отсутствии электрического поля равновероятны все направления теплового движения электронов в металле. Под воздействием электрического поля в движении электронов появляется преимущественное направление. При этом, однако, составляющая скорости электрона вдоль этого направления в среднем невелика, благодаря рассеянию на узлах решетки, Рассеяние электронов возрастает при уведичении степени искажения решетки. Даже незначительное содержание примесей, таких как марганец, кремний, вызывает сильное снижение проводимости меди. Другой причиной снижения проводимости металла или сплава может явиться наклеп— т. е. волочение, штамповка и т. п. Твердотянутая проволока имеет более низкую проводимость, чем мягкая, отожженная. При отжиге происходит рекристаллизация металла, сопровождающаяся повышением проводимости. Ее величина приближается к первоначальной благодаря восстановлению правильной формы кристаллической решетки. Во многих случаях желательно получение проводникового материала с низкой проводимостью такими свойствами обладают сплавы — твердые растворы двух типов. Твердыми растворами замещения называют такие, в которых атомы одного из компонентов сплава замещают в кристаллической решетке второго компонента часть его атомов. В твердых растворах внедрения атомы одного из компонентов сплава размещаются в пространстве между атомами второго, расположенными в узлах кристаллической решетки. Если атомы первого и второго компонентов сплава близки по размерам и строению электронных оболочек  [c.272]

Отметим, что вакансии и межузельные атомы могут возникать двумя путями. Первый из них заключается в том, что какай-либо атом из узла решетки внутри кристалла, может, например, в результате теплового возбуждения перейти в соседнее межузельное положение. После этого возможна или рекомбинация, т. е. возвращение атома в свободный узел, пли переход его в более удаленное от вакансии межузельное положение. В последнем случае возникает пара точечных дефектов кристаллической решетки (в литературе часто называемая парой Френкеля) — вакансия и межузельный (или дислоцированный) атом ). Настоящая вакансия образуется лишь после того, как внедренный атом отойдет от нее с соседнего на более удаленное межузельное положение или вакансия заменится другим атомом, занимающим соседний с ней узел, в результате чего она удалится от внедренного атома. В дальнейшем внедренный атом может перемещаться мегкду узлами и вакансия может перемещаться по узлам, если ее будут замещать соседние атомы, находящиеся на узлах решетки. Этот процесс будет продолжаться до тех пор, пока либо вакансия не встретится с внедренным атомом и не произойдет их рекомби-  [c.36]


Смотреть страницы где упоминается термин Узлы решетки кристаллической : [c.92]    [c.149]    [c.173]    [c.234]    [c.32]    [c.69]    [c.27]    [c.30]   
Справочное руководство по физике (0) -- [ c.115 ]



ПОИСК



Внедренные атомы в кристаллической решетке упорядочивающихся сплавов Условия равновесия тройного сплава, упорядочивающегося на узлах и на междоузлиях

Кристаллическая решетка

Кристаллические

Узел решетки



© 2025 Mash-xxl.info Реклама на сайте