Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электроны и дырки

При равной концентрации донорных и акцепторных примесей в кристалле электропроводность обеспечивается (как и в чистом полупроводниковом материале) электронами и дырками вследствие разрыва валентных связей. Такие полупроводниковые материалы являются компенсированными.  [c.389]

Вентильный фотоэффект. Вентильный фотоэффект — это явление возникновения э. д. с. при освещении контакта двух разных полупроводников или полупроводника металла в отсутствие внешнего электрического поля. На этом явлении основаны вентильные фотоэлементы, обладающие тем преимуществом перед фотосопротивлениями и внешними фотоэлементами, что они могут служить индикаторами лучевой энергии, не требующими внешнего питания. Но главная особенность вентильных фотоэлементов состоит в том, что они открывают путь для прямого превращения солнечной энергии в электрическую. В начале нашего века существовали фотоэлементы, работающие на контактах полупроводников и металлов. Однако в дальнейшем было показано, что наиболее эффективными являются фотоэлементы, основанные на использовании контакта двух полупроводников с р- и -типами проводимости, т. е. на так называемом р- -переходе. При освещении перехода в р-области образуются электронно-дырочные пары. Электроны и дырки диффундируют к р- -переходу. Электроны под действием контактного поля будут переходить в -область. Дырки же преодолевать барьер не могут и остаются в р-области. В результате р-область заряжается положительно, -область — отрицательно и в р-я-переходе возникает дополнительная разность потенциалов. Ее и называют фотоэлектродвижущей силой (фото-э. д. с.).  [c.346]


Если электрону в валентной зоне сообщить энергию, превышающую ширину запрещенной зоны, то он, покидая валентную зону, перейдет в зону проводимости (рис, 16.4, /), При движении по зоне проводимости электрон, потеряв часть своей энергии, опускается к ее дну (рис. 16.4, 2), а в дальнейшем переходит на локальный уровень активатора (рис, 16.4, < ). При уходе электрона из валентной зоны возникает дырка, которая ведет себя подобно положительному заряду. Дырка, двигаясь по валентной зоне, рекомбинирует (рис. 16.4, 4) с электроном, попавшим на уровень активатора из зоны проводимости. Выделенная энергия при рекомбинации электрона и дырки возбуждает ион активатора, являющийся центром высвечивания. Поскольку движение электрона в зоне проводимости происходит с большой скоростью, то процесс люминесценции в данном случае является весьма кратковременным.  [c.362]

Очевидно, что, кроме описанного процесса образования пары электронов с противоположными зарядами должен существовать и обратный процесс перехода электрона из области положительных энергий на свободный уровень в области отрицательных энергий. В этом процессе, названном аннигиляцией, одновременно исчезают обычный электрон и дырка , что в соответствии с законами сохранения энергии и импульса должно сопровождаться переходом энергии покоя обоих электронов в энергию излучения двух Y-квантов. Разумеется, термин аннигиляция (в переводе означает уничтожение ) нельзя понимать в буквальном смысле слова, так как никакого уничтожения материи и энергии не происходит, а имеет место превращение одних частиц (е+ и е-) в другие (у-кванты) и переход энергии из одной формы в другую. Открытие в 1932 г. Андерсоном позитрона в составе космических лучей блестяще подтвердило взгляды Дирака. Электрон и позитрон были названы соответственно частицей и античастицей.  [c.546]

Очевидно, что кроме описанного процесса образования пары электронов с противоположными зарядами должен существовать и обратный процесс перехода электрона из области положительных энергий на свободный уровень в области отрицательных энергий. В этом процессе, названном аннигиляцией, одновременно исчезают обычный электрон и дырка , что в соответствии с законами сохранения энергии и импульса должно сопровождаться переходом энергии покоя обоих электронов в энергию излучения двух у-квантов. Разумеется, термин  [c.98]


В то же время, при наличии в диэлектрике примесных атомов, свободные носители заряда могут появиться за счет термической активации примесных уровней. Вследствие этого при нормальных и низких температурах проводимость в диэлектриках имеет примесный характер. Так же, как и в полупроводниках, носителями заряда здесь могут быть электроны и дырки. Если примесь имеет донорный характер, то основными носителями заряда являются электроны, а неосновными — дырки. Такой диэлектрик (по аналогии с полупроводником) называют электронным или диэлектриком п-типа. Если же примесь акцепторная, то основными носителями являются дырки. В этом случае диэлектрик называют дырочным или р-типа.  [c.272]

Экситонное поглощение. До сих пор мы рассматривали поглощение света, приводящее к образованию свободных электронов и дырок. Однако возможен и другой механизм поглощения, при котором электрон валентной зоны переводится в возбужденное состояние, но остается связанным с образовавшейся дыркой в водородоподобном состоянии. Энергия образования такого возбужденного состояния, называемого экситоном, меньше ширины запрещенной зоны, поскольку последняя есть не что иное, как минимальная энергия, требуемая для создания разделенной пары. Экситон может перемещаться в кристалле, но фотопроводимость при этом не возникает, так как электрон и дырка движутся вместе. Экситоны могут достаточно легко возникать в диэлектриках, так как D них кулоновское притяжение электрона и дырки значительно. В полупроводниках это притяжение мало и поэтому энергия связи экситона также мала. Вследствие этого экситонные орбиты охватывают несколько элементарных ячеек кристалла (радиус орбиты -"15 нм). В металлах экситонное поглощение очень маловероятно.  [c.310]

В возбужденном полупроводнике имеются неравновесные носители заряда — электроны и дырки. К излучению света приводят их рекомбинация. Рассмотрим механизмы излучательной рекомбинации более подробно.  [c.314]

В полупроводниках со сложным строением энергетических зон возможны непрямые переходы электронов из зоны проводимости в валентную зону, сопровождающиеся излучением фотона. В этом случае рекомбинация свободного электрона и дырки идет с участием фонона, что обеспечивает сохранение квазиимпульса. Наиболее вероятно излучение фонона. Если в полупроводнике протекают как прямые, так и непрямые процессы межзонной рекомбинации, то в спектре излучения наблюдается две полосы люминесценции.  [c.315]

Экситон можно рассматривать как возбужденный электрон , который все время остается вблизи дырки. При определенных условиях, например при столкновении экситона с примесным атомом, возможна рекомбинация экситона (рекомбинация электрона и дырки) и, как следствие, освобождение энергии возбуждения. Энергия освобождается также при переходах экситона из возбужденных состояний ( >1) в основное (л=1). Таким образом, экситоны являются своеобразными аккумуляторами энергии , способными переносить энергию от одних точек кристалла к другим. Именно это свойство и предопределяет важность участия экситонов в различных процессах.  [c.152]

Прямая рекомбинация электрона и дырки (рис. 7.11, б) менее вероятна по сравнению с рекомбинацией через примесный уровень, так как требует одновременного выполнения законов сохранения энергии и импульса рекомбинирующих частиц. Она проявляется лишь в очень чистых полупроводниках. В этом случае роль центров рекомбинации играют дырки и, следовательно, N =p, или (с учетом того, что в таких полупроводниках р=п) N =n. Рекомбинацию через примеси называют линейной а прямую рекомбинацию электрона и дырки — квадратичной  [c.175]

Можно предположить, что энергия s, необходимая для создания возбужденного электрона и дырки , линейно уменьшается с температурой, так что зависящая от температуры свободная энергия возбуждения в сверхпроводящей фазе равна  [c.689]

Экситон диамагнитный — экситон, образованный электроном и дыркой с уровней Ландау в зоне проводимости и валентной зоне.  [c.288]

Имеется существенное различие между поведением одиночной дырки вблизи потолка в целиком заполненной зоне и одиночного электрона вблизи потолка пустой зоны. Одиночный электрон имеет отрицательный заряд, и его эффективная масса вблизи потолка зоны отрицательна. Дырка в аналогичном положении в зоне ведет себя так, как если бы она обладала положительным зарядом и положительной массой. Отношение заряда к массе одно и то же и для одиночного электрона, и для соответствующей одиночной дырки. Это означает, что и электрон, и дырка в электрическом поле будут приобретать ускорение в одном направлении, но в случае дырки поле будет затрачивать работу, а в случае элект-  [c.90]


Если ввести отношение подвижностей электрона и дырки, т. е. Ь = Цп/рр, то выражение для постоянной Холла в случае смешанной проводимости можно представить в виде  [c.137]

Здесь учтено, что заряды электрона и дырки одинаковы по. величине и противоположны по знаку.  [c.95]

Рекомбинация. Электроны в зоне проводимости полупроводника находятся в возбужденном состоянии и, следовательно, имеют конечное время жизни. При встрече они аннигилируют с дырками. Однако вероятность такой рекомбинации очень мала, потому что и электроны, и дырки движутся с большими скоростями и вероятность их нахождения в одном и том же месте пространства в один и тот же момент времени ничтожна. Поэтому главный путь рекомбинации осуществляется посредством захвата электронов (или дырок) примесными атомами. Захваченный электрон (или дырка) удерживается около примесного атома до тех пор, пока не аннигилирует с пролетающей мимо дыркой (или электроном). Этот механизм значительно более эффективен, чем прямая рекомбинация. Тем не менее вероятность рекомбинации посредством захвата также не очень велика и обычно обеспечивает сравнительно большую продолжительность жизни соответствующих носителей. В германии и кремнии продолжительность жизни носителей до рекомбинации имеет порядок 10" с.  [c.355]

При этом, по-видимому, осуществляются два процесса. При достаточно большом электрическом поле электроны и дырки в переходе успевают ускориться до таких энергий, что в состоянии вызвать ионизацию атомов и породить другие пары электронов и дырок. В результате начинается лавинный процесс образования носителей, приводящий к росту силы тока. Второй фактор связан с туннельным эффектом, позволяющим микрочастицам преодолевать потенциальные барьеры, имея недостаточную для этого энергию. Это чисто квантовый эффект, о котором уже говорилось в связи с туннельным диодом.  [c.363]

Основной частью полупроводникового счетчика является монокристалл величиной с небольшую монету. Кристалл обработан так, что он является с одной стороны донором, а с другой — акцептором с тонким (от сотен микрон до 5 мм) переходным слоем. Иначе говоря, кристалл представляет собой полупроводниковый диод. На кристалл подается электрическое напряжение, причем р-слой подсоединяется к отрицательному электроду (рис. 9.14). При таком знаке напряжения все носители оттягиваются от переходного слоя, так что диод заперт. Тока нет. Если же через переходный слой проходит быстрая заряженная частица, то образованные при торможении электроны и дырки оттягиваются к электродам, создавая электрический импульс, пропорциональный количеству ионов. Мы видим, что полупроводниковый счетчик работает как ионизационная  [c.504]

Явление увеличения электропроводности полупроводника под действием излучения называют фотопроводимостью и широко используют при создании различных приборов, чувствительных к освещению. Фотопроводимость может возникнуть в полупроводнике лишь при определенной, близкой к ширине его запрещенной зоны энергии фотонов падающего излучения. Излучение с энергией фотонов, меньшей ширины запрещенной зоны, будет проходить через полупроводник не поглощаясь. При энергиях, значительно больших ширины запрещенной зоны, фотоны будут поглощаться поверхностью полупроводника и образующиеся при этом свободные электроны и дырки не проникнут в его толщу.  [c.19]

Электроны и дырки совершают хаотическое тепловое движение в объеме кристалла. Сталкиваясь с узлами кристаллической решетки, они изменяют как направление своего движения, так и его скорость. Свойства электрона в твердом теле отличаются от его свойств в свободном пространстве. Одним из таких отличий и является то, что масса электрона в кристалле т не совпадает с его массой в свободном пространстве т. Величину т называют эффективной массой электрона. Это же понятие используют и применительно к дырке. Эффективная масса дырки Шр, как правило, больше т , вместе с тем обе эти величины меньше массы электрона в свободном пространстве т.  [c.50]

Число электронов в зоне проводимости и дырок в валентной зоне обычно значительно меньше числа энергетических состояний, содержащихся в этих зонах. Поэтому средняя плотность заполнения энергетических состояний электронами и дырками Г соответствует неравенству  [c.52]

В отсутствие внешнего поля свободные электроны и дырки находятся в равновесном состоянии и совершают (при температуре ТфО К) хаотическое движение в объеме полупроводника, средняя тепловая скорость носителей заряда и велика (например, при Т = 300 К1) м/с).  [c.59]

Электроны и дырки испытывают рассеяние, т. е. изменяют направление и скорость своего движения при столкновениях с узлами кристаллической решетки, дефектами решетки, атомами примесей. В результате рассеяния устанавливается равновесное их распределение, при этом средняя скорость движения носителей заряда о = О в любом направлении.  [c.59]

Ударная ионизация. Увеличение электропроводности твердого тела в сильных полях связано с увеличением концентрации носителей заряда. При полях, напряженность которых превышает 10 В/м, электроны проводимости приобретают энергию, достаточную для ионизации атомов. В результате ионизации образуются электронно-дырочные пары, которые ускоряются полем до высоких энергий и тоже могут ионизовать атомы. Таким образом, концентрация свободных носителей лавинообразно нарастает. Этот процесс и получил название ударной иониза-ции. Ударная ионизация не приводит к немед- ленному пробою вещества, поскольку электроны (и дырки), рассеиваясь на фононах, передают свою энергию решетке и могут рекомбинировать.  [c.259]

Энергия фйтона недостаточно велика (например, меньше S.E). Родившиеся электрон и дырка образуют в данном случае связанную пару, характеризующуюся энергией связи  [c.151]

Если генерируемые светом электроны и дырки оказываются пространственно разделенными, возникает разность потенциалов между участками полупроводника. Внутренний фотоэффект, проявляющийся в возникновении фотоЭДС, называют также фотогальваническим (или фотоволыпаическим) эффектом. Возможны различные виды этого эффекта. Остановимся на трех из них 1) возникновение вентильной (барьерной) фотоЭДС в р-п-переходе, 2) возникновение диф(()узионной фотоЭДС (эффект Дембера), 3) возникновение фотоЭДС при освещении полупроводника, помещенного в магнитное поле (фотомагнитоэлектрический эффект, или эффект Кикоина — Носкова).  [c.179]


Фотомагнитоэлектрический эффект (эффект Кикоина — Носкова). Этот эффект обнаружен в 1934 г. советскими физиками И. К. Кикоиным и М. М. Носковым. Сущность эффекта поясняет рис. 7.15. Достаточно сильно поглощающий полупроводник, облучаемый светом, помещается в магнитное поле, направление которого перпендикулярно световому потоку. Если бы не было магнитного поля, то оптически генерируемые электроны и дырки диффундировали бы в глубь полупроводника и мы имели бы эф( ект Дембера. Магнитное поле отклоняет электроны и дырки в разные стороны и тем самым пространственно разделяет их в направлении, перпендикулярном направлениям света и поля. Возникает ЭДС, которая может достигать нескольких десятков вольт. Приемники на основе данного эффекта применяют для приема инфракрасного излучения.  [c.182]

Перемещаясь по кристаллу, электроны проводимости, 1ырки и экситоны тем самым переносят по нему энергию возбуждения. Рассмотрим переходы, связанные с высвечиванием этой энергии (в виде фотона люминесцентного излучения). Во-первых, это может быть междузонный переход 8 (рис. 8.2). Во-вторых, это может быть переход, связанный с рекомбинацией электрона и дырки, образующих экситон,—переход 9. Рекомбинация экситона происходит, например, при его столкновении с п-римесным центром. Наконец, это может быть переход //, происходящий в каком-либо примесном ионе-активаторе он сопровождается безызлучательиыми переходами 10 и 12. Все три рассмотренных процесса высвечивания связаны с одновременным уничтожением электрона в зоне проводимости и дырки в валентной зоне иными словами, все они связаны с электронно-дырочной рекомбинацией. В связи с этим используют термин рекомбинационная люминесценция.  [c.190]

Вильсон п Зондгепмер [74], предполагая наличие двух таких зон с числом носителей на атом соответственно п (носителямн в одной полосе являлись электроны, в другох" — дырки) и предполагая, что электроны и дырки имеют время релаксации (причем не равно Tj), получили следующий результат для теплопроводности в поперечном магнитном поле  [c.277]

Чистый совершенный полупроводник (например, 51, дл которого АЕ 1,1 эВ) вблиаи абсолютного нуля ведет себя как изолятор. С повышением температуры наступает такой момент, когда энергии теплового возбуждения достаточна для массового переброса электронов из валентной зоны в зону проводимости. В результате такого перехода в зоне проводимости появятся электроны, а в валентной зоне — свободные от электронов энергетические уровни, которые, можно в разумных границах ассоциировать с положительными зарядами (дырками). В отсутствие внешнего электрического поля электроны и дырки совершают хаотическое движение. При включении внешнего электрического поля осуществляется направленное движение носителей заряда (дрейф) причем электроны двигаются преимущественно против поля,, а дырки —по направлению поля.  [c.84]

В области низких температур электроны и дырки, локализованные на диекретных уровнях, м огут перемещаться по кристаллу лишь путем прыжков (перескоков) с одного уровня на другой. Для преодоления потенциального барьера, разделяющего примесные атомы, требуется энергия активации. В случае малой концентрации примесных атомов расстояния между ними получаются большими, а поэтому вероятность перескока оказывается небольшой и значения подвижности (скорость дрейфа носителей заряда в электрическом поле с напряженностью 100 В/м) также очень малы. Прыжковую проводимость можно обнаружить лишь при настолько низких температурах, что концентрация свободных носителей заряда становится совсем небольшой (но при Т = 0 тепловая активация невозможна). Представление об изолированных атомах примеси оправдано лишь в том случае, если не перекрываются ни их силовые поля, ни волновые функции электронов, локализованных на этих уровнях.  [c.120]

В записи выражения (4. 40) уро>вень Ферми проходит приблизительно посередине запрещенной зоны, при этом предполагается, что доминирз ющим является рассеяние носителей заряда на акустических колебаниях решетки, т. е. г = 0. Измерение только полярности термо-эдс в области собственной проводимости уже позволяет определить, величина Ь = рп/цр больше или меньше единицы. А снятие температурной зависимости термо-эдс в собственной области (при известной ширине запрещенной зоны АЕ) позволяет получить оценку отношения подвижностей электрона и дырки (см. формулу (4.40)).  [c.142]

Если кристалл поглощает фотоны с энергией, которая больше ширины запрещенной зоны, то в нем образуются пары электрон — дырка. Возникшие таким путем носители заряда могут свободно и независимо перемещаться по кристаллу. Но псюкольку электрон и дырка в силу кулоновского, взаимсщействия притягиваются, возникают и устойчивые, связанные состояния этих частиц. Такие образования (связанные нары электрон — дырка) называются э ксито-н а м и. Они перемещаются в кристалле, перенося энергию возбуждения, но не создавая переноса заряда в силу своей электронейтральности.  [c.160]

Для описания экситона существуют два предельных приближения. Согласно модели Френкеля электрон и дырка в каждый момент времени принадлежат одному и тому же атому в кристалле (сильно связанная система). Согласно модели Мотта и Ванье эвситон раосматривается как слабо свят занная система, причем расстояние между электроном и дыркой считается очень большим по сравнению с постоянной решетки.  [c.160]

Если приписать электрону и дырке эффективные массы Шп и Шр, то задача об змситоне сводится к простой водородоподобной задаче о движении двух частиц под действием взаимного кулоновского притяжения. Предполагается, что энергетические паверхности для электрона и дырки имеют сферическую форму и не вырождены. Если пренебречь импульсом движения центра тяжести системы частиц, то энергия экситона, отсчитанная от состояния полной диссоциации, когда электрон и дырка находятся на бесконечном расстоянии друг от друга,  [c.160]

Сплошной спектр соответствует при атом диссоциированному состоянию зкситона — электрону и дырке в свободном, не связанном состоянии, т. е. нахождению электрона в зоне проводимости. Может показаться, что приведенные рассуждения относительно энергетического спектра экситона противоречат положению, вытекающему из теории Блоха, согласно кото1р1ой между зоной лроводимости и валентной в идеальном кристалле не должно быть никаких разрешенных уровней энергии. Объясняется это противоречие тем, что в теории Блоха /МЫ имеем дело с невзаимодействующими между собой электронами (или дырками), тогда как введение экситонов представляет собой приближение более высокого порядка.  [c.161]

Если не учитывать возможности образования экситонЗ, то п рвому возбужденному состоянию кристалла соответствует один электрон на самом дне зоны проводимости и одна положительнал дырка у потолка валентной зоны, иначе говоря, первый возбужденный уровень энергии описывает состояние с одним электроном и одной дыркой, кинетические энер-. ГИИ которых равны нулю. Однако такое состояние перестает быть устойчивым, если учесть взаимодействие между электроном и дыркой, которое приводит эти частицы во взаимно-связанное состояние и одновременно несколько уменьшает энергию кристалла. Но связанйые электрон и дырка, которые перемещаются по кристаллу как одно целое, по определению,, представляют собой экситон.  [c.162]

Строго говоря, мы не имеем права изображать экснтон-ные уровни энергии на обычных диаграммах, поскольку речь идет о системе двух взаимодействующих между собой частицах — электроне и дырке. Иногда все же удобнее пользоваться этой схемой (см. рис. 54). В рассуждениях, однако, мы пренебрегали движением центра тяжести экситона и не принимали во внимание кинетическую энергию рассматриваемой системы. При учете этого фактора линии энергетического спектра эиситопов превращаются в полосы.  [c.162]


В почти чистых полупроводниках при низких температурах немногочисленные примесные атомы, содержащиеся в кристалле, нейтральны. Слабое электрическое поле (5— 30 В/см) может, однако, ионизировать эти примеси. Последнее приводит к тому, что свободные носители, возникшие в результате ионизации, экранируют кулоновское взаимодействие между электронами и дырками, уменьшая вероятность образования экситона и приводя к исчезновению экситопного пика в спектре поглощения.  [c.164]

Электроны и дырки, обр.ззовасшиеся б результате термогекерации, совершают хаотическое движение в полупроводниковом кристалле в течение некоторого времени, называемого временем жизни, после чего свободный электрон заполняет незаполненную связь, становится связанным, при этом исчезает пара носителей заряда - свободный электрон и дырка. Этот процесс называется рекомбинацией. На энергетической диаграмме (рис. 3.4) генерация электроннодырочной пары отображена-переходом 1, рекомбинация - переходом 2. Таким образом, при температуре ТфО К в свободной зоне оказывается некоторое количество электронов, частично заполняющих ее.  [c.49]


Смотреть страницы где упоминается термин Электроны и дырки : [c.315]    [c.175]    [c.151]    [c.111]    [c.123]    [c.128]    [c.539]    [c.94]    [c.51]    [c.54]   
Смотреть главы в:

Электронные свойства твердых тел  -> Электроны и дырки



ПОИСК



Геликоны в металлах с неравными числами электронов и дырок

Динамика электронов и дырок в полупроводниках

Диффузионный ток дырок электронов

Донорная примесь Дырка» электронная

Дырка

Елоховские электроны дырки

Корреляция теории электронных дырок с фазовым составом сплавов

Коэффициент активности дырок электронов

Магиитоплазменные волны в металлах с равными числами электронов и дырок

Подвижность электронов (дырок)

Расчеты фазового состава суперсплавов по числам электронных дырок с применением ЭВМ (программы ФАКОМП)

Экспериментальные значения концентраций электронов и дырок в полуметаллах

Эффективные массы электронов и дырок



© 2025 Mash-xxl.info Реклама на сайте