Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излучение волн равновесное

Внешнее излучение, проникшее внутрь сферы, практически полностью поглощается, так как обратный выход излучения, в результате отражения от стенок, через малое отверстие затруднен. Характерный размер L абсолютно черного тела должен быть больше длины волны излучения L k). Если температуру стенок сферы поддерживать постоянной, то излучение будет находиться в термодинамическом равновесии со стенками. В этих условиях энергия излучения (или объемная плотность энергии фотонов излучения) определяется только температурой стенок. Такое излучение называют равновесным тепловым излучением.  [c.275]


Эта ситуация несколько напоминает положение во фронте ударной волны с излучением за ударным разрывом плотность излучения меньше равновесной, газ-охлаждается излучением и посылает поток в область перед разрывом, где поток поглощается, плотность излучения выше равновесной, и газ нагревается.  [c.505]

Безразмерная величина, стоящая под корнем, имеет порядок куба отношения средней длины волны равновесного излучения (или длины волны, соответствующей максимуму в планков-ском распределении) к линейному размеру полости. >  [c.61]

В термометрии излучения в отличие от термометрии, основанной на применении термопары или термометра сопротивления, можно использовать уравнения в явном виде, которые связывают термодинамическую температуру с измеряемой величиной (в данном случае со спектральной яркостью). Это возможно потому, что тепловое излучение, существующее внутри замкнутой полости (излучение черного тела), зависит только от температуры стенок полости и совсем не зависит от ее формы или устройства при условии, что размеры полости намного больше, чем рассматриваемые длины волн. Излучение, выходящее из маленького отверстия в стенке полости, отличается от излучения черного тела лишь в меру того, насколько сильно отверстие нарушает состояние равновесия в полости. В тщательно продуманной конструкции это отличие может быть сделано пренебрежимо малым, так что равновесное излучение черного тела становится доступным для измерений. Таким образом, методы термометрии излучения позволяют в принципе измерить термодинамическую температуру с очень высокой точностью, что будет кратко рассмотрено в разд. 7.7.  [c.309]

Вывод формулы Стефана — Больцмана. Выведем (14.5), исходя из термодинамических соображений. Рассмотрим равновесное излучение, находящееся внутри цилиндра с непроницаемыми для электромагнитных волн стенками. Наличие поршня в цилиндре позволяет нам изменять объем, занимаемый излучением. В исходном состоянии излучение характеризуется объемом V, давлением Р, температурой Т.  [c.326]

Кирхгофу принадлежит заслуга детального термодинамического исследования вопроса о связи между испускательной и поглощательной способностью. Теорема Кирхгофа утверждает, что отношение испускательной способности тела к его поглощательной способности зависит от температуры тела, но не от его природы. В противном случае равновесное излучение не могло бы существовать в полости, где есть тела различной природы. Другими словами, отношение oJa) одинаково для всех тел, т.е. является универсальной функцией длины волны (или частоты) и температуры  [c.404]


Все сказанное об усилении рассеянного света относилось к стоксовой компоненте. Антистоксово рассеяние есть процесс, обратный стоксовому, и для него имеет место не усиление, а ослабление интенсивности. Причина появления мощного антистоксова излучения иная, и для ее выяснения целесообразно исходить из классических представлений о природе комбинационного рассеяния, изложенных в 162. Согласно последним комбинационное рассеяние возникает в результате модуляции поляризуемости молекул колебаниями их ядер.. Рассмотрим, ради простоты, случай двухатомной молекулы и обозначим через изменение расстояния между ядрами в сравнении с его равновесным значением. Дипольный момент молекулы, индуцированный полем световой волны, записывается в виде  [c.856]

До сих пор мы излагали материал, следуя исторической канве. Естественно, что на этом пути мы неизбежно встречались с некоторыми неточностями. Так, Планк, рассматривая взаимодействие вещества с равновесным излучением, использовал весьма упрощенную модель — он представлял вещество в виде больцмановского газа из линейных гармонических осцилляторов-излучателей. С точки зрения современной теории следует рассматривать в данном случае не осцилляторы-излучатели вещества, а осцилляторы излучения, соответствующие электромагнитным волнам при этом производится операция, называемая разложением поля на осцилляторы . Хотя такой подход приводит к той же самой формуле Планка, однако он является более физически корректным (чем подход, использовавшийся в свое время Планком), а главное, позволяет перейти впоследствии к рассмотрению общего случая — когда излучение неравновесно.  [c.52]

Векторный потенциал поля излучения и операторы рождения и уничтожения фотонов. В 2.4 на примере задачи о равновесном тепловом излучении был продемонстрирован переход световые волны -> квантовые осцилляторы -> фотоны. В общем виде этот переход рассматривается на основе метода вторичного квантования с использованием, операторов рождения и уничтожения фотонов. Фактически мы уже провели это рассмотрение. Чтобы завершить его, остается  [c.255]

В электродинамике равновесное излучение есть непрерывная совокупность электромагнитных волн (с частотами от О до ос), излучаемых беспорядочно движущимися частицами окружающих тел. Амплитуды и фазы этих волн в случае такого естественного излучения распределены по всему спектру совершенно беспорядочно.  [c.207]

Структурные формулы закона Вина (10.69) и (10.70) определяют плотности энергии излучения, приходящиеся соответственно на единицу интервала частот или на единицу интервала длин волн при температуре Т. Применение термодинамики, следовательно, не решает полностью задачи по определению спектральной плотности равновесного излучения u v, Т). Однако, сведя решение задачи по отысканию этой функции от двух переменных v и Т к задаче определения функции /(v/Г) одной переменной, термодинамика позволила получить достаточно большую информацию о свойствах излучения.  [c.212]

Структурная формула закона Вина (10.70) приводит к смещению максимума спектральной плотности энергии равновесного излучения с изменением его температуры. Действительно, определим длину волны которой соответствует максимальная плотность энергии и , равновесного излучения. Продифференцируем для этого выражение (10.70) по >l и производную приравняем нулю —5ц> Х Т)+Х Тц> (Х Т) = 0, откуда  [c.212]

Формула (10.71) выражает закон смещения Вина длина волны, на которую приходится максимум спектральной плотности энергии Ui равновесного черного) излучения, обратно пропорциональна термодинамической температуре .  [c.212]

Показать, что длина волны Х ,, на которую приходится максимум спектральной плотности энергии щ равновесного излучения, и частота v при которой имеет максимум функция и , не соответствуют друг другу, т. е. Чем обусловлено несовпадение этих максимумов у различных спектральных функций и при каком условии они совпадают  [c.221]


В электродинамике равновесное излучение есть непрерывная совокупность электромагнитных волн (с частотами от О до оо), излучаемых беспорядочно движущимися частицами окружающих тел. Амплитуды и фазы этих волн в случае такого естественного  [c.143]

Формулы (8.61) и (8.62) представляют собой закон Вина об энергии излучения, приходящейся соответственно на единицу интервала частот или на единицу интервала длин волн при температуре Т. Таким образом, видно, что применение термо- и электродинамики к равновесному излучению не решает полностью задачу по определению спектральной плотности излучения u v, Т). Однако, сведя решение задачи по отысканию этой функции от двух переменных v и 7 к задаче определения функции /(v/r) одной  [c.149]

Таким образом, равновесное излучение характеризуется температурой Т, а также давлением р. Давление излучения называют еще световым давлением. Это название будет вполне понятно, если учесть, что излучение имеет электромагнитную природу, т. е. нагретые тела излучают электромагнитные волны различных частот. С изменением температуры интенсивность излучения, а соответственно и распределение энергии излучения по частотам изменяется.  [c.161]

Конечное равновесное состояние плазмы за разрывом соответствует точке Жуге на ударной адиабате волны поглощения. Скорость течения здесь равна местной скорости звука с. Результаты рассчитанной таким образом структуры волны световой детонации в аргоне представлены на рис. 5.9 [37]. Расчеты проводились при начальной плотности молекул в аргоне Л о=2,7-10 см для излучения неодимового лазера ( = = 1,06 мкм).  [c.114]

Эта порция, или квант энергии тепловых колебаний решетки, называется фононом. хю аналогии с квантом электромагнитного излучения — фотоном. Эта аналогия прослеживается и. далее. С точки зрения квантовой теории равновесное тепловое излучение рассматривается как газ, образованный квантами света — фотонами, обладающими энергией Е — hv = Н(л и импульсом р = йи/с = = к/Х, где с — скорость света. Точно так же поле упругих волн, заполняющих кристалл, можно трактовать как газ, образованный квантами нормальных колебаний решетки — фононами, обладаю-Щ.ИМИ энергией = hv = Лю и импульсом  [c.131]

Единственным условием справедливости универсальной функции (2-5) применительно к любой равновесной системе является требование, чтобы собственное излучение стенок полости для всех длин волн было отлично от пуля (v) 0). Этому требованию, однако, удовлетворяют практически все имеющиеся материалы.  [c.62]

Во-вторых, из (2-36) вытекает и другое не менее важное следствие, позволяющее определить длину волны, для которой объемная плотность равновесного излучения при заданной температуре будет максимальной. Пользуясь соотношением =Xv, формулу (2-36) можно записать относительно спектральной объемной плотности энергии равновесного излучения, приходящейся на единицу интервала длин волн )> следующим об-  [c.70]

Выражение (2-39) и является математической формулировкой закона смещения Вина. Из него следует, что при увеличении температуры равновесной системы максимум спектральной объемной плотности энергии равновесного излучения f/дд смещается в сторону более коротких длин волн в соответствии с (2-39).  [c.71]

Помимо решения Вина были предприняты и другие попытки найти распределение спектральной плотности равновесного излучения, исходя из соотношений классической электродинамики. Такой подход был осуш,ест-влен Рэлеем 1[Л. 323] и Джинсом [Л. 324]. Рассматривался газ, находящийся в состоянии термодинамического равновесия и представляющий собой совокупность огромного числа гармонических осцилляторов, излучающих энергию для всех длин волн. В соответствии с законами электродинамики количество энергии, излучаемой гармонически колеблющимся осциллятором в единицу времени, равно  [c.73]

Следует подчеркнуть, что величины ЬЕ- и Е для каждого данного тела являются функциями его собственного температурного состояния и не могут зависеть ни от индивидуальных особенностей окружающих тел, ни от температуры последних. Поэтому обе степени черноты и е относятся к категории физических констант тела, которое рассматривается как источник теплового излучения. Очевидно, сопоставление с помощью формул (7-8) и (7-9) степени черноты и коэффициента поглощения допустимо лишь при том условии, что этот коэффициент также представляет собой физическую константу, характеризующую другую сторону равновесного излучения — поведение данного тела как приемника излучения. Монохроматический коэффициент поглощения действительно является физической константой. Если данное тело облучается в интервале длин волн от >- до не абсолютно черным те-  [c.194]

Известны вещества, где велики одновременно как диссипативные, так и недиссипативные нелинейности. Это сегнетоэлектрич. или жидкие кристаллы с примесями из оптически активных атомов, ионов или молекул, в к-рых существенно взаимное влияние равновесных и неравновесных фазовых переходов. Так, когерентное излучение способно индуцировать обычное упорядочение, и наоборот, обычный фазовый переход приводит к понижению порога генерации и уменьшению длины волны излучения.  [c.329]

Подход Рэлея к изучению теплового излучения. Во всех разобранных выше случаях подход к изучению теплового излучения был термодинамическим. Рэлей в отличие от своих предшественников впервые применил методы статистической физики к явлениям теплового излучения. Равновесное электромагнитное излучение, находящееся в замкнутой полости с постоянной температурой стенок, рассматривалось им как система стоячих волн разных частот, распространяющихся во всевозможных направлениях. Частоты образовавшихся стоячих волн должны удовлетворять тем же условиям, что и частоты стоячих упругих волн в стержне. При колебаниях упругого стержня на его закрепленпых концах образуются узлы смещения и на длине стержня L укладывается целое число полуволн  [c.330]


Как уже ука.чывало( ь, закон Стефана —Больцмана и закон смещения Вина являются обобщением экспериментов по исследованию зависимости светимости черного тела от длины волны и температуры. В то же время они вполне согласуются с охарактеризованной выше термодинамической теорией равновесного теплового излучения. Для уяснения этого получим законы черного тела из термодинамической формулы Вина (8.6).  [c.410]

Предположим, что излучающее тело окружено идеально отражающей, непроницаемой для излучения оболочкой. Тогда излучение, испускаемое телом, не рассеивается по всему пространству, а, отражаясь спота стенками, сохраняется в пределах полости, падая вновь на излучающее тело и в большей или меньшей степени вновь им поглощаясь. В таких условиях никакой потери энергии наша система — излучающее тело и излучение — не испытывают. Однако это еще не значит, что испускающее тело и излучение находятся в равновесии между собой. Энергия нашей системы содержится частично в виде энергии излучения (электромагнитных волн), частично в виде внутренней энергии излучающего тела. Состояние системы будет равновесным, если с течением времени раепределение энергии между телом и излучением не меняется. Поместим внутрь полости нагретое тело (твердое, жидкое или газообразное — безразлично). Если в единицу времени тело больше испускает, чем поглощает (или наоборот), то температура его будет понижаться (или повышаться). При этом будет ослабляться или  [c.683]

Вспомним, что спектральная плотность равновесного излучения, как это подчеркивалось в 196, должна представлять собой универсальную функцию частоты и температуры, т. е. не может зависеть от свойств конкретной излучающей и поглощающей системы. Поэтому Атп/Втп И В т Втп ДОЛЖНЫ иметь Определенные универсальные значения. Для нахождения последних воспользуемся законом Рэлея—Джинса (201.1), который подтверждается измерениями, если длины волн % и температура Т достаточно велики (т. е. 1 тах = 0,51/Т, см. 200, 201). Именно, для указанных условий ехр (НьУт кТ) 1 Н<йт /кТ, и сопоставление соотношений (211.12) и (201.1) приводит нас к формулам )  [c.736]

Допустим, что в полость, окруженную оболочкой с идеально отражающими стенками, помещено тело. Излучение, иепускаемое телом, не рассеивается по всему пространству, а, отражаясь от стенок, сохраняется в полости, падая вновь на тело и частично поглощаясь в нем. В таких условиях никакой потери энергии в системе тело — излучение не происходит. Однако это еще не означает, что тело и излучение находятся в равновесии между собой. Энергия такой системы содержится частично в виде энергии излучения, т. е. электромагнитных волн, а частично — в виде внутренней энергии тела. Состояние системы будет равновесным, если с течением времени распределение энергии между телом и излучением не меняется. Поместим внутрь полости нагретое тело (твердое, жидкое или газообразное). Если в единицу времени тело испускает больше, чем поглощает (или наоборот), то температура его понижается (или повышается). При этом испускание  [c.130]

Формула Рэлея — Джинса. В 1900 г. Джон Уильям Стретт (лорд Рэлей), а позднее и Джинс получили другое выражение для функции ф, используя теорему статистической физики о равнораспределении энергии по степеням свободы. Рассматривая равновесное излучение, они предположили, что на каждое электромагнитное колебание приходится в среднем энергия, равная kT (здесь k — постоянная Больцмана А=1,38 10"2з Дж/К). Число же электромагнитных кол анин (электромагнитных волн), приходящихся на интервал частот от со до o+d o в единице объема полости, равно (этот результат будет получен в  [c.41]

С ростом интенсивности лазерного излучения Ро возрастают температура и степень ионизации плазмы в зоне поглощения. Одновременно возрастает и тепловой поток из плазмы в сторону разрыва. Перед разрывом образуется зона прогрева. При равновесной температуре плазмы за фронтом светодетонационной волны свыше 10 эВ возникает отрыв электронной температуры Те перед фронтом волны от температуры Т холодного газа.  [c.114]

Здесь Lit, Lu — односторонние спектральные энергетические яркости излучения, Вх — функция Планка для равновесного излучения, k x — спектральный коэффициент поглощения, qr = qRy — проекции вектора плотности излучения на нормаль, h — постоянная Планка, сх — спегт-ральная скорость света, k — постоянная Больцмана, Я — длина волны.  [c.442]

Уравнение (2-3) будет выполняться при условии, если спектральная интенсивность равновесного излучения в вакууме /ov для всех длин волн не будет зависеть от направления s, т. е. термодинамичеоки равновесное -излученпе является изотропным. Поскольку, как уже отмечалось, интенсивность в вакууме не меняется вдоль любого направления, то получим первое важное свойство равновесного излучения для вакуума  [c.61]

Второе свойство равновесного излучения заключается в отсутствии у него поляризации для любого направления луча S и любой частоты v. Это свойство вытекает из следующих соображений. Если бы в условиях термодинамического равновесия существовала поляризация для какого-то одного направления и одной длины волны, то, поставив на пути распространения этого луча поляризационное устройство, пропускающее волны определенной поляризации, можно было бы осуществить перенос излучения в термодинамичеоки равновесной системе, что противоречит второму началу термодинамики. Следовательно, равновесное излучение должно обладать естественной поляризацией и ни одна ориентация электромагнитного вектора е должна иметь преимущества перед другими для всех частот и направлений луча.  [c.61]

Для того чтобы определить конкретные значения Ямакс при задании различных температур Т, необходимо знать величину Ь, называемую постоянной Вина. Однако ее численное значение не может быть определено на основании написанных выше уравнений, так как сам вид функции f( lXT) остался неизвестным. Поэтому нахождение Ь может быть осуществлено экспериментальным путем на основании опытных данных по распределению спектральной объемной плотности равновесного излучения по длинам волн, полученному для какой-либо температуры. Теоретические исследования Планка, предпринятые па принципиально новой основе, позволили в дальнейшем найти конкретный вид функции f(v/T) и произвести независимое определение Ь. В соответствии с современными данными ее значение равно  [c.71]

Ракета с зат>отле ным носком входит в земную атмосферу. Скорость ракеты на высоте 60000 м, ра вна 6000 м1сек. Радиус кривизны носка 1,8 м. Вычислите плотность теплового потока в критической точке, пренебрегая излучением высокотемпературных диссоциированных газов за ударной волной. Вычислите также равновесную температуру поверхности, в критической точке. Считайте, что поверхность теплоизолираваяа и излучает в 01кружак>щую среду, как черное тело. Определите. скорость абляции мм мия) графитового защитного экрана носка ракеты.  [c.407]

В 1904 А. Г. Дорошкевич н И. Д. Новиков впервые рассчитали широкий спектр плотности эл.-магн. излучения от всех источников в эволюционирующей Вселенной (включая радиогалактики и звёзды) и показали, что в области сантиметровых и миллиметровых волн интенсивность реликтового излучения с темп-рой ок. 1 К и выше будет на много порядков превосходить излучение отдельных источников, и оно может быть обнаружено. Реликтовое излучение (РИ) было открыто А. Пензиасом (А. Penzias) и Р. Вильсоном (В. Wilson) в 1965 на длине волны 7,3 см. Обнаружение РИ стало решающим тестом, подтвердившим справедливость гипотезы о высокой изначальной темп-ре Вселенной. Тщательные последующие наблюдения показали, что РИ действительно является равновесным, как предсказывает теория, и имеет темп-ру Т 2,1 К. Совр. количество фотонов РИ в ед. объёма см ,  [c.518]


Важнейшее значение имеет открытие и исследование реликтового излучения (РИ), оставшегося от первонач. этана расширения Вселенной. РИ имеет одинаковую интенсивность от всех участков неба и равновесный планковскип спектр (в исследованном интервале длин волн 0,1 — 21 см), соответствующий темп-ре Интенсивность РИ в разных направлениях практически одинакова (флуктуации темп-ры РИ bTjT для участков небесной сферы с размерами от неск. угл. минут до десятков градусов не превыгиают 10- ). Отсутствие  [c.478]

М. ф. и. менялась от 3-10 К до 3 К, должно было заметно исказить его чернотельный спектр. Т. о., спектр М. ф. и. несёт информацию о тепловой истории Вселенной. Болев того, эта информация оказывается дифференцированной выделение энергии на каждом из трёх этапов расширения (3-10 < Т < 310 К 4-10 < Т < < 3-10 К 3 < Г < 4000 К) вызывает специфич. искажение спектра. На первом этапе сильнее всего искажается спектр в ДВ-области, на втором и третьем — в коротковолновой. Свой вклад в искажение спектра в КВ-области вносит уже сам процесс рекомбинации. Фотоны, испускаемые при рекомбинации, обладают энергией ок. 10 эВ, что в десятки раз превышает ср. энергию фотонов равновесного излучения той эпохи (при 7 4000 К). Таких энергичных фотонов крайне мало ( 10 от общего их числа). Поэтому рекомбинационное излучение, возникающее при образовании нейтральных атомов, должно было сильно исказить спектр М. ф. в. на волнах Я 250 мкм.  [c.135]


Смотреть страницы где упоминается термин Излучение волн равновесное : [c.72]    [c.501]    [c.150]    [c.60]    [c.63]    [c.69]    [c.71]    [c.160]    [c.464]    [c.112]   
Справочное руководство по физике (0) -- [ c.378 ]



ПОИСК



Излучение равновесное

Излучения равновесность



© 2025 Mash-xxl.info Реклама на сайте