Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Генерации порог

Рис. 4.3. Спектральные контуры усиления г/ и нелинейного изменения фазы для момента включения генерации (порог) (кривые 1) и для стационарного режима генерации (кривые 2). Частотная отстройка генерационной волны растет от порогового значения до стационарного значения Sj. Рис. 4.3. Спектральные контуры усиления г/ и нелинейного изменения фазы для момента включения генерации (порог) (кривые 1) и для стационарного режима генерации (кривые 2). <a href="/info/54069">Частотная отстройка</a> генерационной волны растет от порогового значения до стационарного значения Sj.

Напомним, что в эффективном коэффициенте отражения учтены потери энергии любой природы, в том числе потери из-за выхода излучения через боковые стенки резонатора. Вполне ясно, что для пучков, распространяющихся наклонно по отношению к оси резонатора, потери будут больше, чем для осевых пучков. Поэтому порог генерации для наклонных пучков выше, чем для осевых. Кроме того, следует помнить об ограниченности запаса энергии активной среды, способного перейти в вынужденное излучение. Поскольку для осевых пучков потери меньше, чем для наклонных, их интен-  [c.782]

В предыдущих параграфах, посвященных описанию принципа действия и конкретных схем лазеров, основное внимание концентрировалось на энергетической стороне дела, а именно, на методах образования достаточно большой инверсной заселенности и на усилении поля в активной среде. Существенную роль при этом играл резонатор, зеркала которого отражали падающий на них свет в активную среду и тем самым способствовали достижению порога генерации. Однако, помимо указанной функции, резонатор выполняет и другую — формирует пространственно когерентное и монохроматическое излучение.  [c.794]

Генерация может возникать, разумеется, лишь для тех частот из бесконечного набора (228.3), которые принадлежат спектральному интервалу, где выполняется условие достижения порога генерации (228.1). Сказанное иллюстрируется рис. 40.12, где сплошная кривая изображает зависимость ненасыщенного коэффициента усиления ао(ш) от частоты, а пунктирная линия отсекает на оси ординат отрезок, равный пороговому значению коэффициента усиления порог = fIL. Генерация, следовательно, возможна лишь для тех частот со , которые расположены внутри интервала  [c.798]

Таким образом, генерация на линии У ) предотвращает достижение порога самовозбуждения на линии / 2- Генерация на линии / 2 в рубине может быть получена в том случае, когда добротность оптического резонатора для нее значительно больше, чем для линии  [c.286]

Упражнение 1. Определение порога генерации и измерение энергии излучения ОКГ. Первоначально проведите наблюдение за появлением генерации на белом экране 14 (рис. 116). После установки экрана на рельс включите ОКГ и подайте на конденсаторы напряжение, заведомо меньшее порогового (800 В). На экране наблюдается люминесценция рубина в виде широкого пятна. Постепенно повышая напряжение, фиксируйте момент появления генерации, когда на экране возникает яркое красное пятно диаметром 5 мм. Энергию импульсов генерации измерьте при нескольких значениях напряжения на батарее конденсаторов от порогового до 1000 В. По результатам измерений постройте кривую зависимости энергии излучения лазера от энергии накачки рубинового стержня. Энергия накачки берется равной электрической энергии батареи конденсаторов. Определите пороговую энергию накачки. Рассчитайте к.п.д. рубинового ОКГ.  [c.301]


Упражнение 3. Исследование спектрального состава излучения лазера. Первоначально сфотографируйте интерферограмму излучения лазера в режиме генерации многих поперечных мод, а затем при выделении только основной моды. В последнем случае сфотографируйте также интерферограмму, соответствующую работе лазера вблизи порога генерации. Подход к порогу осуществляется путем вращения пластины 6.  [c.307]

Наиболее распространенным источником накачки лазеров на красителях в непрерывном режиме является аргоновый лазер, мощность излучения которого составляет несколько ватт на линиях в синей и зеленой областях спектра. Излучение аргонового лазера фокусируется в область с размерами 10—20 мкм для превышения порога генерации. Для устранения термооптических иска-  [c.956]

Как в мягком, так и в жестком режимах при выполнении условия (7.2.8) частота колебаний не зависит от амплитуды накачки. При невыполнении (7.2.8) появляется зависимость частоты генерации от амплитуды накачки. Область существования параметрической генерации ограничена как со стороны малых амплитуд накачки ( порог ), так и со стороны больших амплитуд Л ( потолок ). Существование порога обусловлено необходимостью для генерации полной компенсации потерь в системе за счет параметрического вложения энергии. Наличие потолка связано с расстройкой парциальных частот при больших амплитудах накачки из-за нелинейной реактивности в системе. При жестком режиме возбуждения системы колебания возникают при наличии начального толчка, достаточного для перехода через нижнюю неустойчивую ветвь амплитудной характеристики (см. рис. 7.4). Из рис. 7.6 видно, что в жестком режиме параметрические коле-  [c.264]

ДРУГИЕ ВИДЫ ДВИЖЕНИЯ ДИСЛОКАЦИИ ПРИ СКОЛЬЖЕНИИ. Рассматривая дислокационную природу скольжения, следует иметь в виду многообразие конкретных видов движения дислокаций. Выше были рассмотрены простейшие случаи движения винтовой краевой и смешанной дислокаций, описаны особенности движения и пересечения растянутых дислокаций, дано описание генерации источника Франка—Рида. Рассмотрено двойное поперечное скольжение. Ниже, подчеркивая разнообразие видов движения (скольжения) дислокаций, дается описание движения дислокаций с порогами, с помощью парных перегибов, с особыми точками и пр.  [c.123]

При некогерентной связи частица — матрица появляется еще один дислокационный механизм релаксации локального фазового наклепа — пороги на эпитаксиальных дислокациях [149], которые могут работать как дислокационный источник. Казалось бы, тот факт, что они находятся непосредственно на разделе частица — матрица, т. е. тай, где фазовые напряжения максимальны, должен был бы приводить к инициированию их работы уже в процессе выделения частицы, а следовательно, к практически полной релаксации локального фазового наклепа уже на начальной стадии распада твердого раствора. Однако в работе [168] было экспериментально показано, что при малых размерах частиц второй фазы (нескольких сот ангстрем), некогерентно связанных с матрицей, генерация дислокаций на раз-  [c.45]

Действительно, если принять, что длина порога на эпитаксиальной дислокации равна половине радиуса частицы, то для генерации дислокаций в плоскости (110), в которой вектор Бюргерса для молибдена равен 2,72 А, согласно формуле (3.7), потребуются следующие напряжения при диаметре частицы 200 А Тнр— G/18, а при размере частицы 400 A = G/37 [92].  [c.46]

Таким образом, даже если принять, что порог на эпитаксиальной дислокации достигает значения половины радиуса частицы, то все равно при малых размерах частиц для генерации дислокации по этому механизму требуются напряжения порядка теоретического предела упругости.  [c.46]

Параметры Лазеров подразделяются на внешние и внутренние. Внешние параметры характеризуют излучение, вышедшее из лазера внутренние связаны с процессами, происходящими внутри резонатора с рабочим веществом. К внешним основным параметрам относятся энергия и мощность излучения, длительность импульса, угловая расходимость пучка света, когерентность излучения и поляризации. Помимо этого в ряде случаев необходимо знать распределение энергии и мощности внутри пучка, его спектральный состав и изменение во времени, а также изменение угловой расходимости в ближней и дальней зонах. К внутренним параметрам относятся спектр мод резонатора, усиление и шумы в ряде случаев требуется знать также порог генерации и насыщение. Различные типы лазеров имеют различные параметры, определяющие области их применения в науке и в технике, и в частности в машино-и приборостроении.  [c.19]


Рабочее тело помещается в резонатор, который, как уже указывалось, в большинстве случаев представляет собой интерферометр Фабри—Перо с плоскими или сферическими зеркалами. Обычно одно из зеркал имеет коэффициент отражения R , близкий к 100%, — это так называемое глухое зеркало коэффициент отражения R2 второго зеркала колеблется от 75 до 90%. Большой коэффициент отражения второго зеркала дает низкий порог, но при этом имеет место высокая плотность излучения внутри рубина, что приводит к увеличению потерь и уменьшению выходной мощности. При слишком малых чрезмерно поднимается порог генерации. Обычно оптимальный коэффициент отражения подбирается экспериментально.  [c.25]

В четырехуровневой системе нижний рабочий уровень 2 расположен достаточно высоко над первым, с которого происходит накачка на уровень 4. Таким образом, его населенность значительно меньше населенности основного уровня и инверсия между уровнями 3 и 2 может быть достигнута при значительно меньшей энергии накачки. При охлаждении рабочего тела, населенность нижнего рабочего уровня 2 может быть значительно уменьшена, что снизит порог и облегчит условие генерации.  [c.27]

Типичным представителем этого типа ОКГ является аргоновый лазер (рис. 25). Давление аргона в трубке обычно составляет десятые доли мм рт. ст. При увеличении давления газа концентрация электронов возрастает, а электронная температура уменьшается. Это приводит к достижению некоторого оптимального давления, при котором энергия и мощность генерации максимальны. Питание трубки осуществляется от источника постоянного напряжения, однако возможно использование и высокочастотного разряда. При возрастании тока разряда увеличивается концентрация заряженных частиц, поэтому мощность генерации сильно увеличивается. Вначале, после достижения порога генерации, имеет место очень быстрый рост выходной мощности. Затем, по мере возрастания тока, увеличение мощности замедляется и стремится к насыщению. Насыщение возникает вследствие все возрастающего поглощения фотонов на переходе между нижним рабочим и основным ионным состояниями, что приводит к возрастанию заселенности нижнего рабочего уровня. Однако практически величина тока, идущего через газоразрядную трубку, ограничивается величиной нагрузки, которую может выдержать капилляр (рис. 26).  [c.42]

При достаточном превышении порога мощность генерации определяется скоростью накачки на верхний рабочий уровень  [c.49]

Важной характеристикой кристалла рубина является его температурный порог, т. е. максимальная температура, при которой может начаться генерация. С целью замедления роста температурного порога во времени необходимо добиваться снижения пороговой мощности накачивающего излучения (мощности, необходимой для запуска лазера), уменьшая тем самым внутренний нагрев стержня.  [c.508]

Неравновесные кооперативные явления имеют место в открытых системах, далёких от термодинамич. равновесия, их существование связано с диссипацией энергии. Нек-рые из них обусловлены возникновением в неравновесной системе макроскопич. пространств, когерентности (диссипативной структуры)-, они в значит, степени аналогичны равновесным К. я. при термодинамич. фазовых переходах. К ним относятся когерентное излучение лазера (пример квантового неравновесного К. я.), неустойчивость Рэлея — Бекара, возникающая в нагреваемом снизу слое жидкости, образование пространственно неоднородных структур при нек-рых хим. реакциях, а также В процессе морфогенеза (см. также Неравновесные фазовые переходы). Успешное описание процессов в лазере вблизи порога генерации в терминах Ландау теории фазовых переходов 2-го рода положило начало построению единого подхода к неравновесным К. я., составляющего предмет нового научного направления — синергетики. Общая идея такого подхода состоит в следую-  [c.457]

Известны вещества, где велики одновременно как диссипативные, так и недиссипативные нелинейности. Это сегнетоэлектрич. или жидкие кристаллы с примесями из оптически активных атомов, ионов или молекул, в к-рых существенно взаимное влияние равновесных и неравновесных фазовых переходов. Так, когерентное излучение способно индуцировать обычное упорядочение, и наоборот, обычный фазовый переход приводит к понижению порога генерации и уменьшению длины волны излучения.  [c.329]

Поэтому вблизи порога генерации осуществить одномодовый  [c.49]

Некоторое повышение КПД по сравнению с рубиновым лазером обусловлено тем, что сосредоточенная в возбужденных уровнях энергия на пороге генерации в лазере на стекле с неодимом существенно меньше. Эта разница становится особенно ощутимой при работе в режиме с модулированной добротностью, где КПД неодимового лазера может отличаться более чем на порядок.  [c.179]

АЭ метод применяется для измерения параметров генерации начальных трещин, т. е. для измерения акустического шума диагностируемого объекта и назначения порога дискриминации установление соотношения между числами сигналов АЭ и трещин измерения затухания сигналов АЭ в объекте и определения радиуса области, в которой АЭ преобразователь регистрирует начальные трещины адаптации к объекту процедуры выделения истинного сигнала (соответствующего образованию трещины) из шума и помех локации истинных сигналов, определения размеров зоны их генерации (с возможным использованием других видов неразрушающего контроля - ультразвуковой дефектоскопии, толщинометрии и др.) измерения пауз в потоке истинных сигналов.  [c.47]

I — длина активной среды. Если потери в резонаторе определяются только пропусканием зеркал, то порог генерации будет  [c.15]

В те же годы появился сверхрегенеративный прием. При его осуществлении входной каскад приемника представлял собой ламповую схему, находящуюся на пороге генерации, наступление которой не допускалось путем воздействия на лампу вспомогательной частотой, более низкой, чем частота собственных колебаний регенератора. Наиболее полное объяснение явлений, на которых основывается действие суперрегенератора, дали советские физики Г. С. Горелик и М. Г. Гинц.  [c.304]


Условием порога генерации, таким образом, будет являться ИЗЛ П0Т1 т. е.  [c.15]

Большое распространение в качестве затворов получили также насыщающие фильтры, прозрачность которых возрастает с увеличением интенсивности света, проходящего через них. Такого рода просветляющиеся фильтры получили название пассивных затворов. Поглощение излучения в них связано с переводом молекул из основного состояния в возбужденное. До импульса почти все молекулы находятся в невозбужденном состоянии, и поглощение на данной стадии велико. Следовательно, если такой фильтр находится внутри резонатора, то это связано с увеличением порога генерации, в результате чего к моменту начала генерации под действием накачки на верхнем рабочем уровне рабочего тела накапливается значительное число атомов. После возникновения генерации под действием излучения число невозбужденных молекул в фильтре быстро уменьшается за счет фотовозбуждения, что приводит к резкому уменьшению поглощения фильтр просветляется, добротность резонатора возрастает, и запасенная энергия в рабочем теле излучается в виде мощного импульса. В качестве веществ для пассивных затворов используются некоторые органические красители — так называемые фталоцианины и полиметиновые красители, а также некоторые специальные марки стекол. Особенностью такого рода затворов является невозможность управления моментом отпирания, поэтому они и получили название пассивных.  [c.31]

Управляя мощностью и энергией лазерного излучения, следует регулировать их по возможности плавно в пределах интервалов, необходимых для решения задачи. Для этого прежде всего может быть использована модуляция интенсивности по накачке в газовых лазерах — за счет изменения тока разряда, в инжек-ционных полупроводниках — за счет изменения тока накачки, в твердотельных — за счет изменения тока разряда в лампах. Таким образом, мощность и энергия излучения могут регулироваться в широких пределах, начиная от порога генерации до максимального значения. Однако при изменении интенсивности накачки одновременно с изменением мощности луча изменяются и другие его параметры — модовый состав излучения и распределение интенсивности по поперечному сечению луча. В твердотельных лазерах при изменении энергии накачки сильно изменяется временная структура.  [c.70]

Ширина спектра излучения лазера с Р. д, зависит от режима работы лазера (импульсный или непрерывный), превышения над порогом генерации, конкуренции продольных мод и др. факторов. Так, в имнульсвок лазере с Р. д. ширина спектра генерации определяется эфф. полосой бЛр и длительностью импульса генерации Tj, в соответствии с ф-лой  [c.318]

Развитие полупроводниковых лазеров сделало Tiep neK-тивным использование их для накачки Т. л. Полупроводниковые лазеры (ПЛ) на основе монокристаллов арсенида галлия путём изменения состава позволяют получать генерацию в области 0,75 -н 1 мкм, что даёт возможность эффективно возбуждать генерацию на ионах Nd , TnT , Но , и Yb [5]. Накачка излучением ПЛ является близкой к резонансной, что в значит, степени снимает проблему наведённых термич. искажений в АЭ и позволяет относительно легко достигать предельно высокой направт jrenHo TH лазерного пучка. Получена непрерывная генерация на ионах Но (> г 2,) мкм), Тт (Х, 2,3 мкм), Ег (Я, 2.9 мкм), а также на разл. переходах ионов Порог генера1ши по мощности накачки в нек-рых случаях составляет единицы милливатт. Так, напр., порог генерации на ионах Но " в кристалле ИАГ—Тш —Но равен 4 МВт, а порог генерации на осн. переходе ионов N d в стекле не превышает 2 мВт. На целом ряде кристаллов с неодимом получена генерация второй гармоники. На осн. переходе неодима реализованы режимы модуляции добротности и синхронизации мод. Общий кпд неодимового непрерывного лазера с накачкой излучением ПЛ на длине волны генерации 1,06 мкм достигает 20%,  [c.50]

Прежде чем продолжить обсуждение, следует подчеркнуть, что когда мощность накачки превышает пороговую даже на весьма скромную величину, число фотонов qo в резонаторе обычно уже очень велико. В качестве примера рассмотрим числовые значения, соответствующие одномодовому непрерывному Nd YAG-лазеру (см. также разд. 5.3.6) Ле = 0,5 мм , y = 0,12, а = 3,5-10 м и т = 0,23 мс. Если положить L = 50 см, то получим Тс л 14 НС и из (5.32) имеем qo Ю [(Рр/Рпор) — 1]. Таким образом, даже если мы выберем Яр/Япор = 1,1, то будем иметь около 10 ° фотонов в резонаторе. Это означает, что в уравнении (5.1г) сразу за порогом член УаВ (q-j-1)JV2, описывающий как вынужденное, так и спонтанное излучение, вне всякого сомнения можно аппроксимировать выражением VaBqNi, что мы и делаем в настоящем рассмотрении. Это также означает, что число фотонов в установившемся режиме q весьма нечувствительно к выбранному нами конкретному значению числа начальных фотонов в резонаторе qt в момент времени / = О, которые необходимы для возникновения генерации. Как мы увидим в разд. 5.3.7, эта нечувствительность оказывает сильное влияние на выходные свойства лазерного пучка.  [c.248]

Уменьшение мощности, обусловленное неоптимальным набором условий генерации, оказывается особенно важным вблизи порога генерации (т. е. когда агмии 1). Однако, когда генерация происходит в условиях с большим превышением над порогом, выходная мощность становится практически не чувствительной к изменению связи на выходе вблизи ее оптимального значения. Действительно, из примеров, рассматриваемых в разд. 5.3.6, мы увидим, что изменение связи на выходе вплоть до 50 % приводит всего лишь к 10 %-ному уменьшению выходной мощности.  [c.252]


Смотреть страницы где упоминается термин Генерации порог : [c.363]    [c.348]    [c.339]    [c.788]    [c.215]    [c.66]    [c.16]    [c.137]    [c.13]    [c.37]    [c.37]    [c.320]    [c.329]    [c.54]    [c.320]    [c.432]    [c.444]    [c.161]   
Оптика (1985) -- [ c.312 ]



ПОИСК



Генерация

Порог



© 2025 Mash-xxl.info Реклама на сайте