Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поле электростатическое, электромагнитное

Уравнения (7.17) и (7.20) связывают напряженность электрического поля Е и индукцию магнитного поля В с вспомогательными величинами - электрическим смещением В и напряженностью магнитного поля Я. Порядок выписанных уравнений не случаен. Левая группа описывает электростатические взаимодействия и поля, правая - электромагнитные. Таким образом, можно установить некоторую аналогию между следующими парами величин  [c.232]


Электрореактивные двигатели считаются перспективными для космических объектов, в которых для нагрева или ускорения рабочего вещества используется электричество. В электростатических системах для ускорения ионизированного рабочего вещества используются электростатические поля. В электромагнитных ускорителях массовая сила, ускоряющая поток плазмы  [c.76]

Для концентрации электронного потока в активном пятне его сжимают электростатическим полем фокусирующих линз в виде молибденовых или вольфрамовых колец или магнитным полем, создаваемым электромагнитной катушкой, помещенной в железном каркасе, через центральное отверстие которого про-  [c.613]

Данная ситуация совершенно аналогична случаю с магнитными полями, с которыми сравнивались гравитационные поля в 8.1. Если заряды, создающие электромагнитное поле, имеют одинаковую постоянную скорость относительно неподвижных звезд, то выбором системы покоя зарядов в качестве системы отсчета можно полностью исключить магнитное поле в этой системе электромагнитное поле будет чисто электростатическим полем. Однако в общем случае невозможно выбрать систему отсчета, в которой магнитное поле везде отсутствует. Тем не менее и в этом случае мы не считаем электромагнитное поле существенно отличным от поля в системе, где магнитное поле исключено. Электромагнитное поле во всех случаях описывается одними и теми же фундаментальными уравнениями — уравнениями Максвелла.  [c.181]

Электрическим полем называется одна из частей электромагнитного поля, особенностью которой является то, что это поле создается электрическими зарядами или заряженными телами, а также воздействует на эти объекты незави-си.мо от того, движутся они или неподвижны. Электрическое поле описывается определенными силовыми и энергетическими характеристиками (III.1.8. Г). Если электрически заряженные частицы или тела неподвижны в данной системе отсчета, то их взаимодействие осуществляется посредством электростатического поля. Электростатическое поле является не изменяющимся во времени стационарным) электрическим полем. В общем случае электрическое и электромагнитное поля могут изменяться с течением времени переменное, нестационарное электрическое и электромагнитное поля).  [c.181]


Существуют четыре вида запасенной для сварки энергии электростатическая или конденсаторная, электромагнитная, инерционная и аккумуляторная. Энергия соответственно накапливается в батарее конденсаторов, магнитном поле специального сварочного трансформатора, вращающихся частях генератора или аккумуляторной батарее.  [c.112]

Ускорение электронов электростатическим или электромагнитным полем и формирование электронного пучка.  [c.107]

Тормозное излучение. Ускоренное движение заряженных частиц приводит к излучению электромагнитной волны (см. 3 гл. И). В этой связи представляет интерес рассмотреть случай движения заряженных частиц в электростатическом поле. Очевидно, что при  [c.156]

Рассмотрим диполь, электрический момент которого меняется по закону р = ро os o) . Напомним, что в электростатике вычислялось поле системы двух электрических зарядов разного знака, закрепленных на расстоянии I один от другого. Электростатическое поле такой системы спадало при удалении от ее центра по закону 1/г . Решим теперь динамическую задачу и вычислим электромагнитное поле системы движущихся зарядов.  [c.55]

Идея расчета, впервые проведенная Лоренцем, предельно проста для получения зависимости показателя преломления кар ого-либо вещества от частоты падающего на него света нужно найти вектор поляризации Р этого вещества, создаваемый полем световой волны Е. Затем вычисляют вектор электростатической индукции D = Е + 4т Р и определяют г. = D/E. Используя основное соотношение электромагнитной теории света п = получают искомую зависимость п(ш).  [c.139]

Между тем Фарадею удалось показать, что оптические явления не представляют собой изолированного класса процессов и что, в частности, существует связь между оптическими и магнитными явлениями в 1846 г. Фарадеем было открыто явление вращения плоскости поляризации в магнитном поле. С другой стороны, был обнаружен и другой замечательный факт оказалось, что отношение электромагнитной единицы силы тока к электростатической равно 3-10 м/с, т. е. равно скорости света (Вебер и Кольрауш, 1856 г.). Наконец, теоретические исследования Максвелла показали, что изменения электромагнитного поля не остаются локализованными в пространстве, а распространяются в вакууме со скоростью, равной отношению электромагнитной и электростатической единиц тока, т. е. со скоростью света. Заключение это было подтверждено позднее опытами Герца (1888 г.). На основании своих  [c.21]

Способы расчета электронных путей в электромагнитных полях (независимо от того, применяются ли методы механики или геометрической оптики) позволяют установить условия, при которых электроны, вышедшие из какой-либо точки (источник), соберутся вновь в какой-то точке (стигматическое изображение). Совокупность электрических или магнитных полей, в которых должен двигаться электрон для получения такого изображения, представляет собой электронные линзы (магнитные или электростатические), играющие в электронной оптике такую же роль, как обычные линзы в геометрической оптике ). При подходящих условиях (параксиальные пучки или соответствующим образом рассчитанные исправленные электронные линзы) источник электронов может дать достаточно хорошее изображение.  [c.359]

Важнейшим выводом теории Максвелла явилось положение, согласно которому скорость распространения электромагнитного поля в вакууме равняется отношению электромагнитных и электростатических единиц силы тока второй, не менее важный вывод гласил, что показатель преломления электромагнитных волн равняется У ер, где е — диэлектрическая, ар — магнитная проницаемости среды. Таким образом, скорость распространения электромагнитной волны, в частности света, оказалась связанной с константами вещества, в котором распространяется свет. Эти константы первоначально вводились в уравнения Максвелла формально и имели чисто феноменологический характер. Напомним, что в механической (упругой) теории никакой связи между оптическими характеристиками среды (скорость света) и ее механическими свойствами (упругость, плотность) установлено не было. Известно, что для целого ряда газообразных и жидких диэлектриков соотношение Максвелла п = Уе х е (ибо р. близко к 1) выполняется достаточно хорошо  [c.539]


Прежде чем перейти к изложению сущности, укажем на различие трех выше указанных дифракционных методов. Оно обусловлено различной силой взаимодействия рентгеновского, электронного и нейтронного излучений с веществом. Рентгеновское электромагнитное излучение при прохождении через кристалл взаимодействует с электронными оболочками атомов (возникающие вынужденные колебания ядер вследствие их большой массы имеют пренебрежимо малую амплитуду), и дифракционная картина связана с распределением электронной плотности, которую можно характеризовать некоторой функцией координат р(л. у, z). В электронографии используют электроны таких энергий, что они взаимодействуют, главным образом, не с электронными оболочками атомов, а с электростатическими потенциальными полями ф(х, у, Z), создаваемыми ядрами исследуемого вещества. Взаимодействие между двумя заряженными частицами (электроном и ядром атома) значительно сильнее, чем между электромагнитным излучением и электронной оболочкой атома. Поэтому интенсивность дифракции электронного излучения примерно в 10 раз сильнее, чем рентгеновского. Отсюда понятно, почему получение рентгенограмм часто требует нескольких часов, электронограмм — нескольких секунд.  [c.36]

Ведущий инженер Владимир Васильевич Жуков поступил на работу в ЦСМ РБ в 1999 году переводом с Уфимского приборостроительного производственного объединения. Занимается аттестацией нестандартизованного оборудования, разрабатывает программы аттестации испытательного оборудования. После окончания курсов по поверке средств измерений неразрушающего контроля занимается поверкой магнитопорошковых и вихретоковых дефектоскопов, а также освоением поверок средств измерений электростатических потенциалов и напряженности электромагнитных полей. Является ответственным за поверку средств измерений на переменном токе. Имеет благодарность и Почетную грамоту ЦСМ РБ.  [c.99]

К нехимическим ракетным двигателям относятся ядерные (ЯРД) и электрические (ЭРД). Энергия ЯРД используется для газификации и нагрева рабочего тела, которое не меняет своего состава, истекает из реактивного сопла и создает тягу. Рабочие тела в ЭРД состоят из заряженных частиц, которые разгоняются с помощью электростатических или электромагнитных полей.  [c.259]

Плотность энергии электромагнитных полей, как правило, не очень отличается от плотности энергии электростатических полей, однако в определенных условиях можно добиваться высоких значений плотности энергии электромагнитных полей.  [c.252]

В первых таких приборах использовался пучок молекул аммиака и поэтому их стали называть молекулярными генераторами. Для разделения возбужденных и невозбужденных молекул в молекулярных генераторах используется сильное неоднородное электростатическое поле. Возбужденные молекулы направляются в объемный резонатор, где и отдают свою энергию электромагнитному полю.  [c.413]

С целью экономии использования электроэнергии созданы рациональные системы сварки без перегрузки электросети пиковыми нагрузками с накоплением энергии в электростатическом и электромагнитном полях. Конденсаторные машины с накоплением энергии в электростатическом поле широко распространены в промышленности. Они изготовляются по проектам ИЭС им. Е. О. Патона, завода Электрик , МВТУ им. Баумана и других организаций. Конденсаторные машины позволяют точно дозировать величину энергии, что позволяет сваривать всевозможные детали малых толщин (десятые доли мм) при большой производительности.  [c.121]

Магнитная обработка морской воды заключается в том, что ее перед поступлением в испаритель пропускают через аппарат, где при помощи постоянных магнитов или электромагнитов создается магнитное поле. Механизм магнитной обработки воды изучен еще недостаточно. Одни исследователи считают, что при прохождении морской воды через магнитное поле молекулы перегруппировываются. В результате ослабления электростатических сил взаимодействия между частицами и изменения структуры воды раствора происходит выпадение солей в виде шлама. Другие полагают, что внешнее магнитное поле оказывает влияние на внутренние электромагнитные поля, действующие в молекулах и атомах веществ, находящихся в растворе, и вызывает изменение физических свойств обрабатываемых жидкостей.  [c.113]

Помимо указанных погрешностей ошибки при измерении вызываются несоответствием между температурой датчика и развиваемым им измерительным сигналом, классом точности регистрирующего или записывающего прибора, наличием наводок. На показания датчиков оказывают влияние электромагнитные и электростатические поля, проникающая радиация, давление среды и другие факторы.  [c.258]

Электроны, пролетая через сетки резонатора, возбуждают в нем слабое электромагнитное (ВЧ) поле, которое модулирует электронный поток 4 по скорости. Электронный поток в пространстве между резонатором и отражателем затормаживается электростатическим полем отражателя, и сгруппированные в сгустки электроны возвращаются к резонатору. Скорость электронного потока и напряжение на отражателе подбираются таким образом, что электроны, попадая в тормозящее поле резонатора, отдают свою энергию ВЧ полю резонатора, поддерживая и усиливая в нем колебания. Изменение частоты генерации можно производить механически, изменяя объем  [c.343]

В эмульсии вода в масле , поляризуемой внешним электрическим или электромагнитным полем, электростатические заряды накапливаются внутри мицелл, повышая их электрокине-тический потенциал. Вследствие возникновения относительно небольших зарядов проводимости в масляной фазе часть накопленных зарядов может разрядиться на электродах. В случае эмульсии масло в воде благодаря высокой электрической проводимости водной среды заряды свободно разряжаются па электродах, и только незначительная часть их накапливается внутри обратных мицелл и на их наружных поверхностях. При исследовании концентратов ПИНС (эмульсий вода в масле ) с помощью дериватографов фиксируются температуры и энергии фазовых переходов, соответствующие перестройке коллоидных структур ПИНС. Аналогично при определении частотных зависимостей диэлектрической проницаемости и электрической  [c.210]


Ускорение пучка осуществляется системой многоэлектронных линз. Потери ионов, обусловленные существованием объемного электрического заряда, создают дополнительные проблемы и при конструировании систем формирования ионных пучков высокой интенсивности. Чаще всего в таких установках применяют двух- и трехэлектродные линзы для создания одно- и двухзазорного ускорения [125]. В сильноточных установках ионного легирования широко используют магнитные квадрупольные линзы, способные компенсировать расширение пучка под действием пространственного заряда. Для обработки больших площадей необходимо либо расфокусировать пучок, либо обеспечить его сканирование. Расфокусировка приводит к неоднородности потока, и на практике чаще используют сканирование пучка. Разработаны различные системы сканирования электростатическое, электромагнитное, механическое сканирование, комбинированные системы. Если к монохроматичности пучка не предъявляется жестких требований, то эффективное сканирование в электромагнитном поле можно обеспечить, модулируя по энергии вытягиваемый из источника пучок ионов [109]. В связи с упоминавшимся пространственным зарядом в сильноточных установках для сканирования часто применяют механические системы пучок ионов неподвижен или сканирует лишь в одной плоскости, а равномерность облучения обеспечивается перемещением обрабатываемой детали.  [c.87]

В космосе существуют поля электростатическое, магнитное, гравитационное. Это относится в основном к полям в Солнечной системе. Существуют теоретические предположения (гипотезы) о существовании в космосе изолированных электромагнитных образований - геонов и гравитонов (квантов гравитационного поля). Несмотря на ограниченные возможности для наблюдения только в области оптического и радиодиапазонов, удалось с использованием теоретических расчетов определить уникальные по своей напряженности поля. Так, в конце 1935 г. в созвездии Кассиопеи была открыта звезда 13-й величины, масса которой в 2,8 раз больще массы Солнца, а объем - в 8 раз меньще объема Земли. Сила тяжести на поверхности ее превыщает земную в 3,7-10 раз.  [c.102]

Итак, в стационарном случае средние по времени от единого электромагнитного поля разбиваются на два отдельных поля — электростатическое и магнетостатическое ). Исторически именно этот случай очень долгое время единственно составлял предмет опытов (или, скорее, наблюдений) поэтому создалось представление о существовании двух самостоятельных областей физических явлений — электричества и магнетизма — представление, следы которого можно и до сих пор заметить в построении школьных программ.  [c.259]

В настоящее время разрабатывается два типа электрических ракетных двигателей — плазменный и ионный. В плазменном двигателе разогретое до полной ионизации рабочее тело поступает из плазмогенератора в разгонную камеру, где создано два поля — электростатическое и электромагнитное. Векторы напря-л<енности этих полей и продольная ось камеры взаимно перпендикулярны. Под действием электростатического поля заряженные частицы получают перемещение в поперечном направлении и при этом пересекают магнитные силовые линии. В результате возникает сила Лоренца, приводящая к ускорению частиц вдоль камеры. Таким образом создается направленный осевой поток, приводящий к возникновению тяги. Однако преднамеренно упрощенная нами схема ускорения частиц не наилучшая. В настоящее время основные надежды при разработке плазменного двигателя возлагаются на радиальное электростатическое поле, создаваемое коаксиальными электродами. Это позволяет освободиться от специально устанавливаемых тяжелых электромагнитов. Но не в этом суть дела. Плазменный двигатель позволяет получить удельную тягу, значение которой приближается к десяти тысячам единиц, что на порядок выше, чем в химических Двигателях. Попятно, однако, что плазменный двигатель может работать в условиях только достаточно глубокого вакуума и основная его особенность—малая тяга, существенно меньшая Веса двигателя и энергетической установки, вместе взятых,  [c.199]

Задача определения скорости света принадлежит к числу важнейших проблем оптики и физики вообще. Решение этой задачи имело огромное принципиальное и практическое значение. Установление того, что скорость распространения света конечна, и измерение этой скорости сделали более конкретными и ясными трудности, стоящие перед различными оптическими теориями. Первые методы определения скорости света, опиравшиеся на астрономические наблюдения, способствовали со своей стороны ясному пониманию чисто астрономических вопросов о затмениях отдаленных светил и о годичном параллаксе звезд. Точные лабораторные методы определения скорости света, выработанные впоследствии, используются при геодезической съемке. Теоретическое обоснование и экспериментальное исследование принципа Допплера в оптике сделали возможным решение задачи о лучевых скоростях светил или движущихся светящихся масс (протуберанцы, каналовые лучи) и привели к весьма широким астрономическим обобщениям. Сравнительное измерение скорости света в вакууме и различных средах послужило в свое время в качестве ехрег1теп1ит сгис1з для выбора между волновой и корпускулярной теориями света, а впоследствии привело к понятию групповой скорости, имеющему большое значение и в современной квантовой физике. Сравнение скорости распространения света с константой с максвелловской теории, обозначающей, с одной стороны, отношение между электромагнитными и электростатическими единицами заряда, а с другой — скорость распространения электромагнитного поля, сыграло важнейшую роль при обосновании электромагнитной теории света. Наконец, вопрос о влиянии движения системы на скорость распространения света и вся обширная совокупность связанных с ним экспериментальных и теоретических проблем привели к формулировке эйнштейновского принципа относительности — одного из самых значительных обобщений  [c.417]

В области охраны труда и обеспечения безопасности идет освоение поверок измерителей электромагнитных полей. Освоены поверки средств измерений электростатического потенциала (ИЭСП).  [c.100]

Для классификации отказов и процессов их возникновения по виду энергии важнейшими являются механическая — энергия свободно движущихся отдельных микрочастиц и макросистем и энергия упругой деформации системы (тела) тепловая— энергия неупорядоченного, хаотического движения большого числа микрочастиц (атомов, молекул и др.) электрическая (электростатическая и электродинамическая) — энергия взаимодействия и движения электрических зарядов, электрически заряженных частиц химическая — энергия электронов в атоме, частично освобождаемая в результате перестройки электронных оболочек атомов и молекул при их взаимодействии в процессе химических реакций электромагнитная—энергия движения фотонов электромагнитного поля аннигиляционная — полная энергия системы, вещества (энергия покоя и энергия движения), освобождаемая в процесе аннигиляции (превращения частиц вещества в кванты поля).  [c.37]

Во всех этих аппаратах и конструкциях используются способы возбуждения колебаний самой различной физической природы. Наиболее распространенными являются механические способы, электромагнитные и электродинамические, которые здесь вкратце будут охарактеризованы. Кроме них, используются также методы асинхронных возвратно-поступательных и колеблющихся поворотных двигателей, методы вращающихся магнитных полей, фотоэлектрические, электростатические, пьезоэлектрические, маг-нитострикционные эффекты, гидравлические, пневматические пульсаторы и даже испарение твердой углекислоты. Все эти методы освещены в специальной 21, [41, [5], [111, 46], [47].  [c.425]


В других науках внутреннюю энергию определяют как энергию, содержащуюся в системе. Например, в систему, состояш.ую из чаши с шариком, может быть введена работа для того, чтобы придать шарику конечную скорость. Соответствующее увеличение внутренней энергии системы в механике шазывается увеличением кинетической энергии системы. Далее, в систему, содержащую груз в гравитационном поле, может быть введена работа для подъема груза. Соответствующее увеличение внутренней энергии системы в механике называется увеличением потенциальной энергии, обусловленной гравитацией. Аналогично внутренняя энергия может включать потенциальную энергию, обусловленную электростатическим или электромагнитным воздействием. Все ЭТО — разные формы энергии, которая накапливается в системе и может быть увеличена или уменьшена за счет передачи работы. Внутренняя энергия, кроме того, включает в себя все виды энергии, которая накапливается в системе при передаче тепла.  [c.14]

Колебат. механич. системами Э. п. могут быть стержни, пластинки, оболочки разл. формы (полые цилиндры, сферы, совершающие разл. вида колебания), механич. системы более сложной конфигурации. Колебат. скорости и деформации, возникающие в системе под воздействием сил, распределённых по её объёму, могут, в свою очередь, иметь достаточно сложное распределение. В ряде случаев, однако, в механич. систем можно указать элементы, колебания к-рых с достаточным приближением характеризуются только кинетич, и потенц. энергиями и энергией механич. потерь. Эти элементы имеют характер соответственно массы М, упругости I / С и активного механич. сопротивления г (т.н. системы с сосредоточенными параметрами). Часто реальную систему удаётся искусственно свести к эквивалентной ей (в смысле баланса энергий) системе с сосредоточенными пара.меграми, определив т. н. эквивалентные массу Л/, , упругость 1 / С , и сопротивление трению / . Расчёт механич. систем с сосредоточенными параметрами может быть произведён методом электромеханич. аналогий. В большинстве случаев при электромеханич. преобразовании преобладает преобразование в механич, энергию энергии либо электрического, либо магн. полей (и обратно), соответственно чему обратимые Э.п. могут быть разбиты на след, группы электродинамические преобразователи, действие к-рых основано на электродинамич. эффекте (излучатели) и эл.-магн. индукции (приёмники), напр, громкоговоритель, микрофон электростатические преобразователи, действие к-рых основано на изменении силы притяжения обкладок конденсатора при изменении напряжения на нём и на изменении заряда или напряжения при относит, перемещении обкладок конденсатора (громкоговорители, микрофоны) пьезоэлектрические преобразователи, основанные на прямом и обратном пьезоэффекте (см. Пьезоэлектрики) электромагнитные преобразователи, основанные на колебаниях ферромагн. сердечника в перем. магн. поле и изменении магн. потока при движении сердечника  [c.516]

Защитные оболочки сцинтилляционных счетчиков. Ранее (см. 6-2) уже отмечалось, что сцинтклляционный счетчик монтируется в светонепроницаемом кожухе. При металлическом светонепроницаемом кожухе любой минимальной толщины достигается надежное экранирование и от электростатических полей. Значительно сложнее организовать защиту от электромагнитных полей, которые, влияя на траекторию движения электронов, могут нарушить электронно-оптическую систему ФЭУ. Результатом такого влияния является уменьшение эффективности сцинтилляционного счетчика.  [c.156]

В наноразмерных структурах электронные волны могут взаимодействовать друг с другом и с различными неоднородностями, при этом может наблюдаться интерференция, благодаря наличию которой у электронов заряда можно управлять, используя локальные электростатические или электромагнитные поля.  [c.150]


Смотреть страницы где упоминается термин Поле электростатическое, электромагнитное : [c.157]    [c.132]    [c.195]    [c.19]    [c.49]    [c.36]    [c.226]    [c.241]    [c.303]    [c.160]    [c.535]    [c.24]    [c.47]    [c.86]   
Основы техники ракетного полета (1979) -- [ c.199 ]



ПОИСК



Испытания на воздействие электромагнитного излучения и электростатического поля (В.Н. Филинов)

Поле электромагнитное

Поле электростатическое

Электромагнитные

Электромагнитные поля

Электростатические



© 2025 Mash-xxl.info Реклама на сайте